
3010

ARTIFICIAL INTELLIGENCE
Lecture 1 State space search

Masashi Shimbo

2019-05-09

License: cba CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/


2

TODAY’S AGENDA

▶ What is state space search in AI?

▶ State space search algorithm template

▶ Two basic search algorithms

▶ Breadth-first search
▶ Depth-first search



3

TODAY’S AGENDA

▶ What is state space search in AI?

▶ State space search algorithm template

▶ Two basic search algorithms

▶ Breadth-first search
▶ Depth-first search



4

AI SEARCH: SCENARIO

▶ An AI program (agent) wants the environment to be in a particular
state (goal state)

▶ The agent usually has many actions to choose from
—Taking an action changes the state of the environment

▶ Thus, the task of an agent is to find an action sequence that
changes the current state (initial state) of the environment into
the goal state



5

EXAMPLE: “BLOCKSWORLD”

A B C

Initial state

C
B
A

Goal state

▶ Current state of the environment is called initial state
▶ Desired state is called goal state



6

AI SEARCH: SCENARIO

▶ An AI program (agent) wants the environment to be in a particular
state (goal state)

▶ The agent usually has many actions to choose from
—Taking an action changes the state of the environment

▶ Thus, the task of an agent is to find an action sequence that
changes the current state (initial state) of the environment into
the goal state



7

AI SEARCH: SCENARIO

▶ An AI program (agent) wants the environment to be in a particular
state (goal state)

▶ The agent usually has many actions to choose from
—Taking an action changes the state of the environment

▶ Thus, the task of an agent is to find an action sequence that
changes the current state (initial state) of the environment into
the goal state



8

ACTIONS CHANGE THE STATE OF THE ENVIRONMENT

A B C

B C
A

B C
A

A C
B

A C
B

A B
C

A B
C

move(A,B)

move(A,C)move(B,A)

move(B,C)

move(C,A) move(C,B)



9

ACTIONS CHANGE THE STATE OF THE ENVIRONMENT

A B C B C
A

B C
A

A C
B

A C
B

A B
C

A B
C

move(A,B)

move(A,C)move(B,A)

move(B,C)

move(C,A) move(C,B)



10

AI SEARCH: SCENARIO

▶ An AI program (agent) wants the environment to be in a particular
state (goal state)

▶ The agent usually has many actions to choose from
—Taking an action changes the state of the environment

▶ Thus, the task of the agent is to find an action sequence that
changes the current state (initial state) of the environment into
the goal state



11

AI SEARCH: SCENARIO

▶ An AI program (agent) wants the environment to be in a particular
state (goal state)

▶ The agent usually has many actions to choose from
—Taking an action changes the state of the environment

▶ Thus, the task of the agent is to find an action sequence that
changes the current state (initial state) of the environment into
the goal state



12

AI SEARCH: TASK

Find an action sequence (solution) that can put the environment in a
desired goal state

—preferably without incurring too much total cost

(each action incurs a certain amount of cost)



13

AI SEARCH: TASK

Find an action sequence (solution) that can put the environment in a
desired goal state

—preferably without incurring too much total cost

(each action incurs a certain amount of cost)



14

A B C B C
A

B C
A

A C
B

A C
B

A B
C

A B
C

move(A,B)

move(A,C)move(B,A)

move(B,C)

move(C,A) move(C,B)

cost: 7

cost: 6cost: 4

cost: 3

cost: 1 cost: 1

Note: All action costs must be positive



15

A B C B C
A

B C
A

A C
B

A C
B

A B
C

A B
C

move(A,B)

move(A,C)move(B,A)

move(B,C)

move(C,A) move(C,B)

cost: 7

cost: 6cost: 4

cost: 3

cost: 1 cost: 1

Note: All action costs must be positive



16

A B C B C
A

B C
A

A C
B

A C
B

A B
C

A B
C

move(A,B)

move(A,C)move(B,A)

move(B,C)

move(C,A) move(C,B)

cost: 7

cost: 6cost: 4

cost: 3

cost: 1 cost: 1

Note: All action costs must be positive



17

SOLUTION
= Action sequence changing the initial state to a goal state

A B C A C
B

C
B
A

move(B,C) move(A,B)

cost: 3 cost: 10

Note: cost of an action sequence is the sum of the costs of actions
involved

å solution above has cost 3 + 10 = 13



18

ACTION COSTS—WHAT DO THEY REPRESENT?

Depend on the task you want to solve

But “costs” always represent the quantity you want tominimize

å the smaller the better

Example:
payment, labor, fuel consumption, time, or combination of these



19

STATE SPACE IS ESSENTIALLY A GRAPH

State space (states, actions, costs) can be represented as a graph

state space concept graph concept
state = node/vertex

action = arc/edge
action cost = arc (edge) weight

action sequence = path

These terms will be used interchangeably in this course



20

A B C B C
A

B C
A

A C
B

A C
B

A B
C

A B
C

move(A,B)

move(A,C)move(B,A)

move(B,C)

move(C,A) move(C,B)



21

A B C B C
A

B C
A

A C
B

A C
B

A B
C

A B
C

move(A,B)

move(A,C)move(B,A)

move(B,C)

move(C,A) move(C,B)

node 1 node 2

node 3node 4

node 5

node 6 node 7



22

EXAMPLE 2: GRIDWORLD

initial state

goal state



23

EXAMPLE 2: GRIDWORLD

initial state

goal state



24

STATE SPACE: MORE FORMAL DEFINITION
State space is a labeled graph (V, A, c), where

▶ V = set of nodes/vertices (states)

▶ A = set of edges/arcs (actions), A ⊂ V × V

å (u, v) ∈ A means there is an edge from node u to node v

▶ c = cost (label) function, c : A→ R+

å function c associates each edge with a positive cost; e.g., c(u, v) = 5
with

▶ a specific node s ∈ V called initial state

▶ a set G ⊂ V of nodes called goal (or terminal) states



25

(State space) search is a task of finding an action sequence (or path) in
state space, from the initial state to a goal state

— preferably the one with the least cost
(= shortest path in the state space graph)

So we are essentially dealing with the shortest path problem



26

FURTHER ASSUMPTIONS

▶ No outgoing edges exist in goal states

▶ The number of states (nodes) can be infinite
—However, for any state, the number of outgoing edges (available
actions) is finite (i.e., the graph is locally finite)

▶ Action costs are bounded away from 0. That is,

∃ε > 0 ∀(u, v) ∈ A c(u, v) > ε

(all action costs are greater than a certain positive number ε)



27

INFORMATION AVAILABLE TO AGENT
Following functions can be used for designing AI search algorithms:

function Succ(v): set of “successor” nodes of node v

Succ(v) = {u | (v, u) ∈ A}

i.e., set of nodes that can be reached from v with a single action

N.B. Because the graph is locally finite, Succ(v) is finite for every v

function c(v, u): cost of taking an action at node v that leads to node u

function IsGoal(v): returns “true” if node v is a goal; “false” if not



28

STATE SPACE IN AI PROBLEMS CAN BE HUGE

▶ The number of states might even be infinite

▶ in which case explicit graph representation does not fit on
memory

For example …



29

EIGHT-PUZZLE

1 3

8 6 7

4 5 2

1 2 3

4 5 6

7 8



30

EIGHT-PUZZLE

1 3

8 6 7

4 5 2

1 3

8 6 7

4 5 2

1 3

8 6 7

4 5 2

1 3 7

8 6

4 5 2

8 1 3

6 7

4 5 2

1 6 3

8 7

4 5 2



31

EIGHT-PUZZLE

1 3

8 6 7

4 5 2

1 2 3

4 5 6

7 8

9!/2 ≃ 1.8× 105 states



32

FIFTEEN-PUZZLE

14 13 15 7

11 12 9 5

6 2 1

4 8 3 10

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

16!/2 ≃ 1.0× 1013 states



333× 3 8-Puzzle 9!/2 ≃ 1.8× 105

4× 4 15-Puzzle 16!/2 ≃ 1.0× 1013

5× 5 24-Puzzle 25!/2 ≃ 7.8× 1024

6× 6 35-Puzzle 36!/2 ≃ 1.9× 1041

7× 7 48-Puzzle 49!/2 ≃ 3.0× 1062

Cf. 1G = 109

1T = 1012

1P = 1015

1E = 1018



34

NUMBER OF STATES IN (n2 − 1)-PUZZLES

1× 100

1× 1010

1× 1020

1× 1030

1× 1040

1× 1050

1× 1060

1× 1070

2 3 4 5 6 7
n



35

RUBIK’S CUBE

4.3× 1019 configurations (states)

R. Korf [1997] used Iterative-Deepending A* to find optimal solutions to Rubik’s cube



36

STATE SPACE DOES NOT FIT ONMEMORY—WHAT CAN BE DONE?

Build a partial graph representing part of the state space on the fly

å Expand one node at a time, until a goal state is reached

Terminology

“expand” a node
a node is said to be expanded if all of its successor nodes are
generated (see below)

“generate” a node
a node is said to be generated if its representation is created and
stored on memory



37

GRADUALLY BUILD A STATE SPACE GRAPH

Expand one node at a time, until a goal state is reached

▶ Initially, only initial node s is on memory (i.e., generated)

▶ All search algorithms start by expanding s (i.e., generating all
succssors of s)

▶ Then choose one of these nodes to expand next, and repeat



38

DIFFERENT NODE EXPANSION STRATEGIES
å DIFFERENT SEARCH ALGORITHMS

The order in which nodes are expanded determines different search
strategies

å Many search algorithms differ only on node expansion strategies
— otherwise they are quite similar



39

TODAY’S AGENDA

▶ What is state space search in AI?

▶ State space search algorithm template

▶ Two basic search algorithms

▶ Breadth-first search
▶ Depth-first search



40

TODAY’S AGENDA

▶ What is state space search in AI?

▶ State space search algorithm template

▶ Two basic search algorithms

▶ Breadth-first search
▶ Depth-first search



41▶ Breadth-first search
▶ Depth-first search
▶ Dijkstra’s algorithm
▶ A*

Difference in these algorithms lies in the order in which nodes are
expanded

Let us assume that the state space is a uniform-cost tree rooted at the
initial node, and analyze how they differ



42

TREE-STRUCTURED STATE SPACE

For the ease of discussion, we assume:

▶ all action costs are identical
▶ the state space is a tree rooted at the initial state

A (rooted) tree is a graph such that:

▶ every node in the graph has exactly one path from the root (initial)
node.



43

ROOTED TREE: EXAMPLE
s root (initial) node



44

▶ Breadth-first search
▶ Depth-first search
▶ Dijkstra’s algorithm
▶ A*

If the state space is a tree, these algorithms are instances of theGeneral
Tree Search algorithm…



45

GENERAL TREE SEARCH ALGORITHM (TEMPLATE)
input : initial state s
output : a solution path, if found, or “failure”

1 OPEN← new List # create a list to hold nodes that are generated but not yet expanded

2 Insert(OPEN, s) # initially OPEN only holds the initial state

3 loop do # repeat the following forever

4 if IsEmpty(OPEN) then # empty OPEN means no goal state is reachable from s

5 return “failure”

6 v← RemoveOne(OPEN) # pick a node in OPEN

7 if IsGoal(v) then return Solution(v, s) # if it is a goal, return solution path

8 Expand(v,OPEN) # expand v, i.e., generate all its successors and put it in OPEN



46

OPEN AND EXPANDEDNODES DURING SEARCH

OPEN = nodes at the frontier;
generated but not yet expanded

expanded nodes



47

OPEN AND EXPANDEDNODES DURING SEARCH

OPEN = nodes at the frontier;
generated but not yet expanded

expanded nodes



48

OPEN AND EXPANDEDNODES DURING SEARCH

OPEN = nodes at the frontier;
generated but not yet expanded

expanded nodes



49▶ At the outset, list OPEN contains the initial state s only

▶ In each iteration:

▶ A state is picked up (and removed) from OPEN (RemoveOne)
▶ It is Expanded — all successor states are generated (= kept on memory)
▶ The generated states are added to OPEN (with Insert)

Different implementations of

▶ data structure List
▶ function RemoveOne
▶ function Insert

lead to different search strategies



50

GENERAL TREE SEARCH ALGORITHM (TEMPLATE)
input : initial state s
output : a solution path, if found, or “failure”

1 OPEN← new List # create a list to hold nodes that are generated but not yet expanded

2 Insert(OPEN, s) # initially OPEN only holds the initial state

3 loop do # repeat the following forever

4 if IsEmpty(OPEN) then # empty OPEN means no goal state is reachable from s

5 return “failure”

6 v← RemoveOne(OPEN) # pick a node in OPEN

7 if IsGoal(v) then return Solution(v, s) # if it is a goal, return solution path

8 Expand(v,OPEN) # expand v, i.e., generate all its successors and put it in OPEN



51

procedure Expand(v,OPEN)

input : state v to expand
input : OPEN—list to store successors of v

1 foreach u ∈ Succ(v) do
2 Reserve memory to store Parent of node u # “generate” u

3 Parent[u]← v # remember that v is the parent of u

4 Insert(OPEN, u) # put u in OPEN, because u is generated but not yet expanded

Recall that Succ(v) is the function that returns the set of successor nodes of v:

Succ(v) = {u | (v, u) ∈ A}



52

GENERAL TREE SEARCH ALGORITHM (TEMPLATE)
input : initial state s
output : a solution path, if found, or “failure”

1 OPEN← new List # create a list to hold nodes that are generated but not yet expanded

2 Insert(OPEN, s) # initially OPEN only holds the initial state

3 loop do # repeat the following forever

4 if IsEmpty(OPEN) then # empty OPEN means no goal state is reachable from s

5 return “failure”

6 v← RemoveOne(OPEN) # pick a node in OPEN

7 if IsGoal(v) then return Solution(v, s) # if it is a goal, return solution path

8 Expand(v,OPEN) # expand v, i.e., generate all its successors and put it in OPEN



53

function Solution(t, s)

Backtrack Parent[v] to obtain a path from s to t from the initial state s to a goal state t

input : goal state t
input : initial state s
output : list P of actions saved in a “stack”

1 P←new Stack
2 v← t
3 while v , s do
4 Push(P, v)
5 v← Parent[v]
6 return P



54

WHENWEDISCUSS SEARCH ALGORITHMS,
THE FOLLOWING PROPERTIES ARE OF INTEREST:

A search procedure is said to be

Complete
if it never fails to find a solution (provided that one exists)

Admissible
if it always finds a cheapest solution



55

OTHER RELEVANT EVALUATIONMETRICS

Time complexity
The amount of time a search procedure takes to find a solution

Space complexity
The amount of memory it needs to find a solution



56

TODAY’S AGENDA

▶ What is state space search in AI?

▶ State space search algorithm template

▶ Two basic search algorithms

▶ Breadth-first search
▶ Depth-first search



57

TODAY’S AGENDA

▶ What is state space search in AI?

▶ State space search algorithm template

▶ Two basic search algorithms

▶ Breadth-first search
▶ Depth-first search



58

BREADTH-FIRST SEARCH
Our first tree search algorithm

Use a (FIFO; “first-in first-out”) queue to order node expansion in the
general tree search algorithm



59

FIFO QUEUE

Procedures/functions to manipulate FIFO queue X:

function IsEmpty(X)
Return true if list (=queue) X is empty

procedure Enqueue(X, v)
Put item v at the end of list X.

function Dequeue(X)
Return the first item in X, after removing it.



60

FIFO QUEUE: EXAMPLES

X : a b
1 2 Enqueue(X, c

)
X : a b c

1 2 3

X : a b c
1 2 3 Enqueue(X, d )

X : a b c d
1 2 3 4

X : a b c d
1 2 3 4 v← Dequeue(X)

v : a

X : b c d
1 2 3



61

FIFO QUEUE: EXAMPLES

X : a b
1 2 Enqueue(X, c

)
X : a b c

1 2 3

X : a b c
1 2 3 Enqueue(X, d )

X : a b c d
1 2 3 4

X : a b c d
1 2 3 4 v← Dequeue(X)

v : a

X : b c d
1 2 3



62

FIFO QUEUE: EXAMPLES

X : a b
1 2 Enqueue(X, c

)
X : a b c

1 2 3

X : a b c
1 2 3 Enqueue(X, d )

X : a b c d
1 2 3 4

X : a b c d
1 2 3 4 v← Dequeue(X)

v : a

X : b c d
1 2 3



63

FIFO QUEUE: EXAMPLES

X : a b
1 2 Enqueue(X, c

)
X : a b c

1 2 3

X : a b c
1 2 3 Enqueue(X, d )

X : a b c d
1 2 3 4

X : a b c d
1 2 3 4 v← Dequeue(X)

v : a

X : b c d
1 2 3



64

FIFO QUEUE: EXAMPLES

X : a b
1 2 Enqueue(X, c

)
X : a b c

1 2 3

X : a b c
1 2 3 Enqueue(X, d )

X : a b c d
1 2 3 4

X : a b c d
1 2 3 4 v← Dequeue(X)

v : a

X : b c d
1 2 3



65

FIFO QUEUE: EXAMPLES

X : a b
1 2 Enqueue(X, c

)
X : a b c

1 2 3

X : a b c
1 2 3 Enqueue(X, d )

X : a b c d
1 2 3 4

X : a b c d
1 2 3 4 v← Dequeue(X)

v : a

X : b c d
1 2 3



66

FIFO QUEUE: EXAMPLES

X : a b
1 2 Enqueue(X, c

)
X : a b c

1 2 3

X : a b c
1 2 3 Enqueue(X, d )

X : a b c d
1 2 3 4

X : a b c d
1 2 3 4 v← Dequeue(X)

v : a

X : b c d
1 2 3



67

FIFO QUEUE: EXAMPLES

X : a b
1 2 Enqueue(X, c

)
X : a b c

1 2 3

X : a b c
1 2 3 Enqueue(X, d )

X : a b c d
1 2 3 4

X : a b c d
1 2 3 4 v← Dequeue(X)

v : a

X : b c d
1 2 3



68

FIFO QUEUE: EXAMPLES

X : a b
1 2 Enqueue(X, c

)
X : a b c

1 2 3

X : a b c
1 2 3 Enqueue(X, d )

X : a b c d
1 2 3 4

X : a b c d
1 2 3 4 v← Dequeue(X)

v : a

X : b c d
1 2 3



69

FIFO QUEUE: EXAMPLES

X : a b
1 2 Enqueue(X, c

)
X : a b c

1 2 3

X : a b c
1 2 3 Enqueue(X, d )

X : a b c d
1 2 3 4

X : a b c d
1 2 3 4 v← Dequeue(X)

v : a

X : b c d
1 2 3



70

GENERAL TREE SEARCH ALGORITHM (TEMPLATE)
input : initial state s
output : a solution path, if found, or “failure”

1 OPEN← new List # create a list to hold nodes that are generated but not yet expanded

2 Insert(OPEN, s) # initially OPEN only holds the initial state

3 loop do # repeat the following forever

4 if IsEmpty(OPEN) then # empty OPEN means no goal state is reachable from s

5 return “failure”

6 v← RemoveOne(OPEN) # pick a node in OPEN

7 if IsGoal(v) then return Solution(v, s) # if it is a goal, return solution path

8 Expand(v,OPEN) # expand v, i.e., generate all its successors and put it in OPEN



71

BREADTH-FIRST SEARCH
input : initial state s
output : a solution path, if found, or “failure”

1 OPEN← new Queue # create a list to hold nodes that are generated but not yet expanded

2 Enqueue(OPEN, s) # initially OPEN only holds the initial state

3 loop do # repeat the following forever

4 if IsEmpty(OPEN) then # empty OPEN means no goal state is reachable from s

5 return “failure”

6 v← Dequeue(OPEN) # pick a node in OPEN

7 if IsGoal(v) then return Solution(v, s) # if it is a goal, return solution path

8 Expand(v,OPEN) # expand v, i.e., generate all its successors and put it in OPEN



72

procedure Expand(v,OPEN)

input : state v to expand
input : OPEN—list to store successors of v

1 foreach u ∈ Succ(v) do
2 Reserve memory to store Parent of node u # “generate” u

3 Parent[u]← v # remember that v is the parent of u

4 Insert(OPEN, u) # put u in OPEN, because u is generated but not yet expanded



73

procedure Expand(v,OPEN)

input : state v to expand
input : OPEN—list to store successors of v

1 foreach u ∈ Succ(v) do
2 Reserve memory to store Parent of node u # “generate” u

3 Parent[u]← v # remember that v is the parent of u

4 Enqueue(OPEN, u) # put u in OPEN, because u is generated but not yet expanded



74

BREADTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d

f g

t e

h i

initial state

goal state

OPEN:

Expanded state:

s



75

BREADTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d

f g

t e

h i

initial state

goal state

OPEN:

Expanded state: s



76

BREADTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d

f g

t e

h i

initial state

goal state

OPEN:

Expanded state:

a b



77

BREADTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d

f g

t e

h i

initial state

goal state

OPEN:

Expanded state:

b

a



78

BREADTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d

f g

t e

h i

initial state

goal state

OPEN:

Expanded state:

b c d



79

BREADTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d

f g

t e

h i

initial state

goal state

OPEN:

Expanded state:

c d

b



80

BREADTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d

f g

t e

h i

initial state

goal state

OPEN:

Expanded state:

c d t e



81

BREADTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d

f g

t e

h i

initial state

goal state

OPEN:

Expanded state: c

d t e



82

BREADTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d

f g

t e

h i

initial state

goal state

OPEN:

Expanded state:

d t e



83

BREADTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d

f g

t e

h i

initial state

goal state

OPEN:

Expanded state: d

t e



84

BREADTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d

f g

t e

h i

initial state

goal state

OPEN:

Expanded state:

t e f g



85

BREADTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d

f g

t e

h i

initial state

goal state

OPEN:

Expanded state:

e f g

t



86

BREADTH-FIRST SEARCH: PROPERTIES

BFS is complete
BFS never fails to find a goal, even if the state space is infinite.

BFS is not admissible
BFS returns the first shallowest solution path it finds. In general,
the shallowest solution path might not be the one with the least
cost.
It is, however, admissible if all actions have an equal cost.



87

BREADTH-FIRST SEARCH: COMPLEXITY

For discussion, assume a tree with uniform branching factor b

Branching factor (of a node)
Number of successors at a given node

Tree with uniform branching factor b
tree in which all internal nodes have exactly b successors



88

TREEWITH UNIFORM BRANCHING FACTOR b = 2

s root (initial) node



89

WORST CASE SPACE COMPLEXITY
d = depth of a shallowest goal state

Space complexity is dependent on the number of generated nodes

▶ because once a node is generated, it is kept on memory
▶ Recall that generated nodes = nodes placed in OPEN

Space complexity
In the worst case, all nodes up to depth d, and some nodes at depth
(d + 1) are generated. Thus,

1 + b + b2 + b3 + · · ·+ bd + (bd+1 − b) = O(bd+1)



90

WORST CASE TIME COMPLEXITY

d = depth of a shallowest goal state

Time complexity
Same as space complexity
—because node generation dominates the runtime

O(bd+1)



91

PROBLEMWITH BREADTH-FIRST SEARCH

Memory inefficient



92

DEPTH-FIRST SEARCH

Uses Stack (LIFO list; “last-in first-out” list) for node expansion ordering



93

STACK
LIFO (“Last-in first-out”) buffer

Procedures/functions to manipulate stack S :

function IsEmpty(S )
Return true if stack S is empty

procedure Push(S , v)
Insert item v at the beginning of list S

function Pop(S )
Return the first item in S after removing it

function Inspect(S )
Return the first item in S , without removing the item
(Equivalent to v← Pop(S ) followed by Push(S , v))



94

STACK: EXAMPLES

S : a b
1 2 Push(S , c

)
S : c a b

1 2 3

S : c a b
1 2 3 Push(S , d )

S : d c a b
1 2 3 4

S : d c a b
1 2 3 4 v← Pop(S )

v : d

S : c a b
1 2 3



95

STACK: EXAMPLES

S : a b
1 2 Push(S , c

)
S : c a b

1 2 3

S : c a b
1 2 3 Push(S , d )

S : d c a b
1 2 3 4

S : d c a b
1 2 3 4 v← Pop(S )

v : d

S : c a b
1 2 3



96

STACK: EXAMPLES

S : a b
1 2 Push(S , c

)
S : c a b

1 2 3

S : c a b
1 2 3 Push(S , d )

S : d c a b
1 2 3 4

S : d c a b
1 2 3 4 v← Pop(S )

v : d

S : c a b
1 2 3



97

STACK: EXAMPLES

S : a b
1 2 Push(S , c

)
S : c a b

1 2 3

S : c a b
1 2 3 Push(S , d )

S : d c a b
1 2 3 4

S : d c a b
1 2 3 4 v← Pop(S )

v : d

S : c a b
1 2 3



98

STACK: EXAMPLES

S : a b
1 2 Push(S , c

)
S : c a b

1 2 3

S : c a b
1 2 3 Push(S , d )

S : d c a b
1 2 3 4

S : d c a b
1 2 3 4 v← Pop(S )

v : d

S : c a b
1 2 3



99

STACK: EXAMPLES

S : a b
1 2 Push(S , c

)
S : c a b

1 2 3

S : c a b
1 2 3 Push(S , d )

S : d c a b
1 2 3 4

S : d c a b
1 2 3 4 v← Pop(S )

v : d

S : c a b
1 2 3



100

STACK: EXAMPLES

S : a b
1 2 Push(S , c

)
S : c a b

1 2 3

S : c a b
1 2 3 Push(S , d )

S : d c a b
1 2 3 4

S : d c a b
1 2 3 4 v← Pop(S )

v : d

S : c a b
1 2 3



101

STACK: EXAMPLES

S : a b
1 2 Push(S , c

)
S : c a b

1 2 3

S : c a b
1 2 3 Push(S , d )

S : d c a b
1 2 3 4

S : d c a b
1 2 3 4 v← Pop(S )

v : d

S : c a b
1 2 3



102

STACK: EXAMPLES

S : a b
1 2 Push(S , c

)
S : c a b

1 2 3

S : c a b
1 2 3 Push(S , d )

S : d c a b
1 2 3 4

S : d c a b
1 2 3 4 v← Pop(S )

v : d

S : c a b
1 2 3



103

STACK: EXAMPLES

S : a b
1 2 Push(S , c

)
S : c a b

1 2 3

S : c a b
1 2 3 Push(S , d )

S : d c a b
1 2 3 4

S : d c a b
1 2 3 4 v← Pop(S )

v : d

S : c a b
1 2 3



104

GENERAL TREE SEARCH ALGORITHM (TEMPLATE)
input : initial state s
output : a solution path, if found, or “failure”

1 OPEN← new List # create a list to hold nodes that are generated but not yet expanded

2 Insert(OPEN, s) # initially OPEN only holds the initial state

3 loop do # repeat the following forever

4 if IsEmpty(OPEN) then # empty OPEN means no goal state is reachable from s

5 return “failure”

6 v← RemoveOne(OPEN) # pick a node in OPEN

7 if IsGoal(v) then return Solution(v, s) # if it is a goal, return solution path

8 Expand(v,OPEN) # expand v, i.e., generate all its successors and put it in OPEN



105

DEPTH-FIRST SEARCH
Input : initial state s
Output : a solution path, if found, or “failure”

1 OPEN← new Stack # create a list to hold nodes that are generated but not yet expanded

2 Push(OPEN, s) # initially OPEN only holds the initial state

3 loop do # repeat the following forever

4 if IsEmpty(OPEN) then # empty OPEN means no goal state is reachable from s

5 return “failure”

6 v← Pop(OPEN) # pick a node in OPEN

7 if IsGoal(v) then return Solution(v) # if it is a goal, return solution path

8 Expand(v,OPEN) # expand v, i.e., generate all its successors and put it in OPEN



106

procedure Expand(v,OPEN)

input : state v to expand
input : OPEN—list to store successors of v

1 foreach u ∈ Succ(v) do
2 Reserve memory to store Parent of node u # “generate” u

3 Parent[u]← v # remember that v is the parent of u

4 Insert(OPEN, u) # put u in OPEN, because u is generated but not yet expanded



107

procedure Expand(v,OPEN)

input : state v to expand
input : OPEN—list to store successors of v

1 foreach u ∈ Succ(v) do
2 Reserve memory to store Parent of node u # “generate” u

3 Parent[u]← v # remember that v is the parent of u

4 Push(OPEN, u) # put u in OPEN, because u is generated but not yet expanded



108

DEPTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d t e

f g h i

initial state

goal state

OPEN:

Expanded state:

s



109

DEPTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d t e

f g h i

initial state

goal state

OPEN:

Expanded state: s



110

DEPTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d t e

f g h i

initial state

goal state

OPEN:

Expanded state:

a b



111

DEPTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d t e

f g h i

initial state

goal state

OPEN:

Expanded state: a

b



112

DEPTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d t e

f g h i

initial state

goal state

OPEN:

Expanded state:

c d b



113

DEPTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d t e

f g h i

initial state

goal state

OPEN:

Expanded state: c

d b



114

DEPTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d t e

f g h i

initial state

goal state

OPEN:

Expanded state:

d b



115

DEPTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d t e

f g h i

initial state

goal state

OPEN:

Expanded state: d

b



116

DEPTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d t e

f g h i

initial state

goal state

OPEN:

Expanded state:

f g b



117

DEPTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d t e

f g h i

initial state

goal state

OPEN:

Expanded state: f

g b



118

DEPTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d t e

f g h i

initial state

goal state

OPEN:

Expanded state:

g b



119

DEPTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d t e

f g h i

initial state

goal state

OPEN:

Expanded state: g

b



120

DEPTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d t e

f g h i

initial state

goal state

OPEN:

Expanded state:

b



121

DEPTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d t e

f g h i

initial state

goal state

OPEN:

Expanded state: b



122

DEPTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d t e

f g h i

initial state

goal state

OPEN:

Expanded state:

t e



123

DEPTH-FIRST SEARCH: A SAMPLE RUN

s

a b

c d t e

f g h i

initial state

goal state

OPEN:

Expanded state: t

e



124

DEPTH-FIRST SEARCH IS NOT COMPLETE, NOR IS
ADMISSIBLE

May not terminate if the state space is infinite

It returns the first (leftmost) solution however bad its quality is.



125

DEPTH-FIRST SEARCH
Additional improvement

With small modifications, depth-first search can be memory-efficient

å suitable for search in huge state space

Idea:
As soon as all descendants of a node have been expanded, the node
can be removed from memory



126

IDEA: VISIT EACH NODE TWICE
▶ once when it is expanded

— when there is still a chance that a goal exists below the node

▶ once when all its descendant has been expanded and we are backtracking
— when all the subtree below the node has been exhaustively searched (but
goal was not found)

We keep track of the number of visits to v in Count[v]

▶ First, when v is generated, let Count[v]← 0
å v in OPEN has Count[v] = 0 =⇒ it’s the first pass for v

▶ After it is expanded, let Count[v]← 1
å v in OPEN has Count[v] = 1 =⇒ it’s the second pass for v



127

first pass (forward search)

▶ keep the node in OPEN
▶ set Count to 1 (from 0)
▶ expand the node

second pass (backtracking)

▶ Detected by checking whether
Count = 1

▶ second pass means no goal was found in
the subtree underneath (so no use
keeping this node)

▶ release memory for the node
▶ remove the node from OPEN



128

DEPTH-FIRST SEARCH—original version
Input : initial state s
Output : a solution path, if found, or “failure”

1 OPEN← new Stack
2 Push(OPEN, s)
3 loop do

4 if OPEN is empty then return “failure”
5 v← Pop(OPEN)

6 if IsGoal(v) then return Solution(v)
7 Expand(v,OPEN)



129

DEPTH-FIRST SEARCH—memory saving version
Input : initial state s
Output : a solution path, if found, or “failure”

1 Count[s] = 0
2 OPEN← new Stack
3 Push(OPEN, s)
4 loop do
5 if OPEN is empty then return “failure”
6 v← Inspect(OPEN) # We don’t remove v from the stack yet

7 if IsGoal(v) then return Solution(v)
8 if Count[v] = 0 then # first time v is visited
9 Expand(v,OPEN)

10 Count[v]← 1

11 else # second time v is visited

12 Pop(OPEN) # remove v from the stack

13 Release memory associated with v # i.e., Parent[v] and Count[v]



130

procedure Expand(v,OPEN)

input : state v to expand
input : OPEN—where to store successors of v

1 foreach u ∈ Succ(v) do
2 Reserve memory to store Parent[u] and Count[u]
3 Parent[u]← v
4 Count[u]← 0
5 Push(OPEN, u)



131

MEMORY USED BY DEPTH-FIRST SEARCH (memory saving version)

▶ As soon as all descendants of a node have been expanded, the node is removed
from memory

å required memory is linear in the number of nodes in OPEN

▶ For a tree with uniform branching factor b, when depth-first search expands a
node at depth k, at most O(bk) nodes are stored in OPEN
å required memory is linear in the depth of the state space



132

WORST CASE COMPLEXITY OF DEPTH-FIRST SEARCH

Time complexity
In the worst case all nodes in the state space will be expanded.
hence, O(bm)where m is the maximum depth of any node.

Space complexity
Using the memory-saving version,

O(bm)



133

SUMMARY
Breadth-first vs. depth-first tree search

Search algorithm Breadth-first Depth-first
Complete? yes no
Admissible? yes* no
Time complexity O(bd+1) O(bm)

Space complexity O(bd+1) O(bm)

*admissible if action costs are all identical

b : branching factor
d : depth of the shallowest goal state
m :maximum depth of the state space



134

NEXTWEEK

Dijkstra’s shortest-path algorithm

▶ Dealing with loops (general graph search)
▶ Taking non-uniform costs into account


	Title
	Agenda
	State space
	Tree search
	Properties of search algorithms
	Breadth-first search
	Depth-first search
	Summary
	Next week

