# ARTIFICIAL INTELLIGENCE

Lecture 2 Dijkstra's shortest path algorithm

Masashi Shimbo

2019-05-13

License: @ (i) (i) CC BY-SA 4.0 except where noted

#### **TODAY'S AGENDA**

- Uniform-cost search (to consider edge weights) for trees
- Dijkstra's algorithm (for non-tree graphs)

## **Uniform-cost Search for Trees**

#### **BREADTH-/DEPTH-FIRST SEARCH ALGORITHMS**

## **Breadth-first search** expands shallowest nodes first **Depth-first search** expands deepest nodes first

In both algorithms, edge (=action) costs are ignored

they are not admissible if edge costs vary

## **"UNIFORM-COST TREE SEARCH" EXPANDS NODES WITH THE CHEAPEST COST FIRST**

To make this possible,

**1** For each node *v*, maintain the path cost from the initial node

g[v] = path cost from the initial state to v

Use a **priority queue** to implement the OPEN list
 — to select the node with the minimum *g*-value from OPEN

#### **PRIORITY QUEUE**

Has an associated function (**priority function**) g that determines the priority g[v] of each item v in the list

$$g$$
-value = low  $\implies$  priority = high

► Allows retrieval of an item with the **minimum** *g*-value

## **PRIORITY QUEUE**

Two functions for manipulating priority queue  $P_g$ :

 $\frac{\text{Insert}_g(P_g, v)}{\text{Put item } v \text{ in } P_g}$ 

 ${
m DeleteMin}_g(P_g)$ Remove and return an item with the minimum *g*-value from  $P_g$ 

returned item v is such that

 $v = \operatorname*{argmin}_{u \in P_g} g[u]$ 

before its removal

### **UNIFORM-COST SEARCH FOR TREES**

- 1 OPEN  $\leftarrow$  **new** <u>List</u> PriorityQueue<sub>g</sub>
- $\mathbf{2} \ g[s] \leftarrow 0$
- 3 Insert Insert<sub>g</sub>(OPEN, s)
- 4 loop do
- 5 if IsEmpty(OPEN) then return "failure"
- $\bullet \qquad v \leftarrow \frac{\text{RemoveOne DeleteMin}_g(\text{OPEN})}{\text{OPEN}}$
- 7 if IsGoal(v) then return Solution(v, s)
  8 Expand(v)

**N.B.** OPEN, *g*, and Parent are global variables

### **procedure** Expand(*v*)

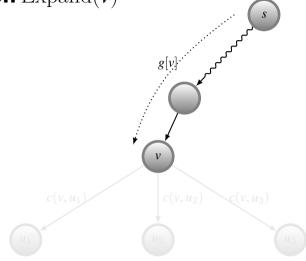
now maintains the cost g from the initial state

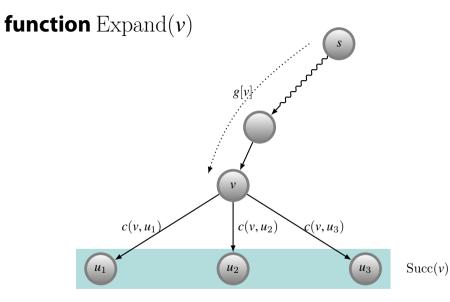
**Input** : *v*: node to expand **Output** : set of successors of *v* 

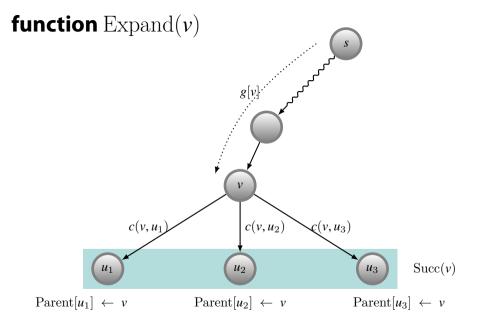
1 foreach node  $u \in Succ(v)$  do2Reserve memory for node u3Parent $[u] \leftarrow v$ 4 $g[u] \leftarrow g[v] + c(v, u)$ 5Insert Insert\_g (OPEN, u)

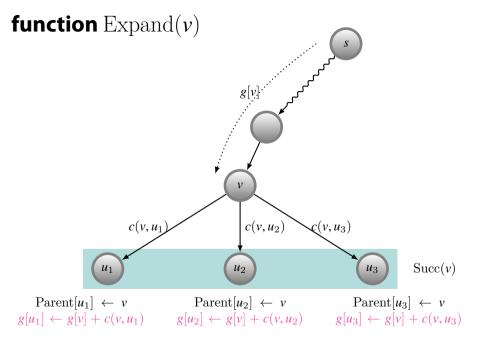
#### **N.B.** OPEN, *g*, and Parent are global variables

## function $\operatorname{Expand}(v)$









## **UNIFORM-COST SEARCH ALGORITHM FOR TREES**

- 1 function UnformCostSearch(s)
- 2 OPEN  $\leftarrow$  **new** PriorityQueue<sub>g</sub>
- 3  $g[s] \leftarrow 0$
- 4  $\operatorname{Insert}_{g}(\operatorname{OPEN}, s)$
- 5 loop do
- if IsEmpty (OPEN) then
  return "failure"
- 8  $v \leftarrow \text{DeleteMin}_g(\text{OPEN})$
- 9 if IsGoal(v) then 10 return Solution(v, s)
- 11  $\operatorname{Expand}(v)$

- **procedure**  $\operatorname{Expand}(v)$
- 2 foreach  $u \in \operatorname{Succ}(v)$  do
- Reserve memory for *u* 
  - $\operatorname{Parent}[u] \leftarrow v$

4

6

$$g[u] \leftarrow g[v] + c(v, u)$$

 $\operatorname{Insert}_g(\operatorname{OPEN}, u)$ 



## Dijkstra's shortest-path algorithm

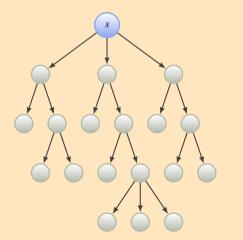
ダイクストラの最短経路アルゴリズム

Photo of Edsger J. Dijkstra  $^{\odot}$  Hamilton Richards / CC BY-SA 3.0 / GFDI

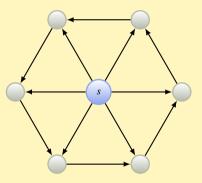
#### TREES

#### GRAPHS

## There exists exactly one path from the initial node to each node



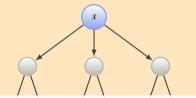
There can be many paths from the initial node to a node



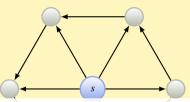
#### TREES

#### GRAPHS

There exists exactly one path from the initial node to each node



There can be many paths from the initial node to a node



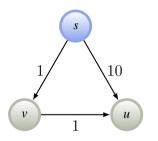
How does the difference affect search algorithms?

#### SHORTEST-PATH SEARCH IN A TREE

- For every node, there is only one path from the initial node *s*
- The first-found path to a node is the only path to the node
- of course, it is also the shortest path to the node
- These do not apply to general (= non-tree) graphs

#### SHORTEST-PATH SEARCH IN A GENERAL GRAPH

The first-found path to a node may not be the shortest



After *s* is expanded and *u* is generated,

g[u] = c(s, u) = 10

But path  $s \rightarrow u$  is not the shortest path! ( $s \rightarrow v \rightarrow u$  is)

When a function call Expand(v, OPEN) tries to generate a successor *u* of *v*, three cases are possible:

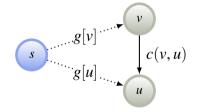
1 *u* has never been generated

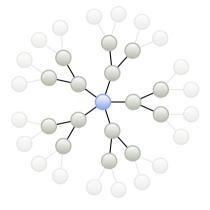
2 *u* has been generated but not yet expanded

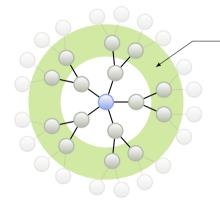
**3** *u* has been generated and expanded

We need to distinguish these cases

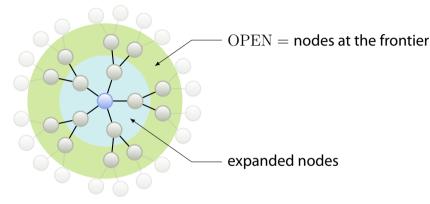
Do we have sufficient information to do so? No



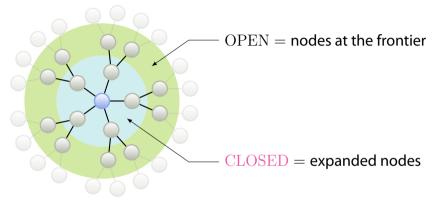




- OPEN = nodes at the frontier



So far, we have not kept record of expanded nodes at all - they were simply taken out of OPEN after expansion



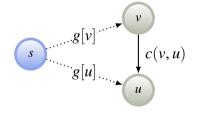
So far, we have not kept record of expanded nodes at all — they were simply taken out of OPEN after expansion ➡ Let's keep these nodes in a set called CLOSED

If expanded nodes are kept in CLOSED, the three cases can be restated:

- 1 *u* has never been generated
  - ⇒  $u \notin OPEN \cup CLOSED$

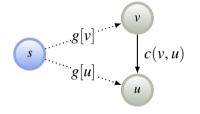
2 *u* has been generated but not yet expanded

3 *u* has been generated and expanded



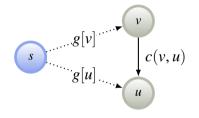
If expanded nodes are kept in CLOSED, the three cases can be restated:

- 1 *u* has never been generated
  - ⇒  $u \notin OPEN \cup CLOSED$
- **u** has been generated but not yet expanded  $\downarrow u \in OPEN$
- 3 *u* has been generated and expanded

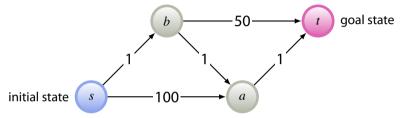


If expanded nodes are kept in CLOSED, the three cases can be restated:

- 1 *u* has never been generated
  - ⇒  $u \notin OPEN \cup CLOSED$
- u has been generated but not yet expanded
  - $\blacktriangleright$   $u \in OPEN$
- 3 *u* has been generated and expanded
  - ⇒  $u \in \text{CLOSED}$



#### What happens if we run uniform-cost tree search in a graph?

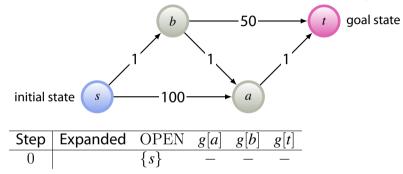


- ► 3 paths from *s* to *t*:
  - $s \to a \to t$

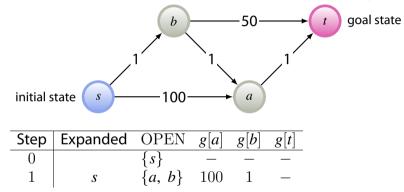
• 
$$s \to b \to t$$

- $s \to b \to a \to t$
- Shortest path is  $s \rightarrow b \rightarrow a \rightarrow t$  with cost=3

#### What happens if uniform-cost tree search is run in a non-tree graph?



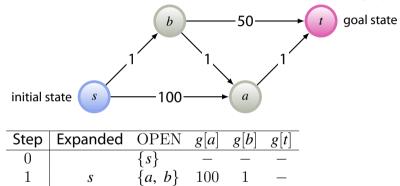
#### What happens if uniform-cost tree search is run in a non-tree graph?



2

b

#### What happens if uniform-cost tree search is run in a non-tree graph?



?

1

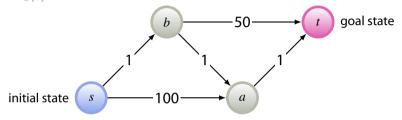
 $\{a, t\}$ 

\_

51

#### Suppose we kept the value of g[a] intact...

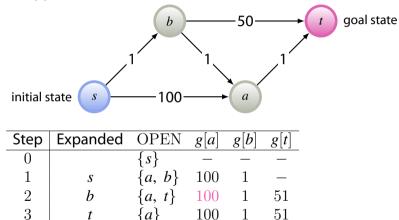
仮にg[a]を更新しなかったとすると...



| Step | Expanded | OPEN       | g[a] | g[b] | g[t] |
|------|----------|------------|------|------|------|
| 0    |          | $\{s\}$    | —    | —    | —    |
| 1    | S        | $\{a, b\}$ | 100  | 1    | —    |
| 2    | b        | $\{a, t\}$ | 100  | 1    | 51   |

#### Suppose we kept the value of g[a] intact...

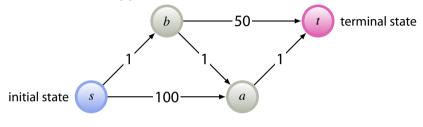
仮にg[a]を更新しなかったとすると...



Solution  $s \rightarrow b \rightarrow t$ : cost=51 (not the shortest path)

## If we let $g[a] \leftarrow \min\{g[a], g[b] + c(b, a)\}$

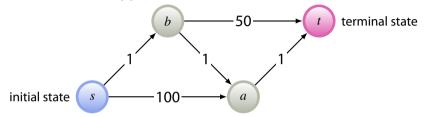
より短い方のコストを g[a] に保持すれば...



| Step | Expanded | OPEN       | g[a] | g[b] | g[t] |
|------|----------|------------|------|------|------|
| 0    |          | $\{s\}$    | _    | _    | _    |
| 1    | S        | $\{a, b\}$ | 100  | 1    | —    |
| 2    | b        | $\{a, t\}$ | 2    | 1    | 51   |

## If we let $g[a] \leftarrow \min\{g[a], g[b] + c(b, a)\}$

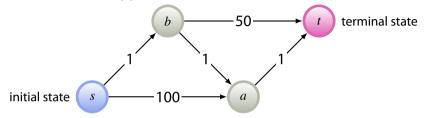
より短い方のコストを g[a] に保持すれば...



| Step | Expanded | OPEN       | g[a] | g[b] | g[t] |
|------|----------|------------|------|------|------|
| 0    |          | $\{s\}$    | —    | —    | —    |
| 1    | S        | $\{a, b\}$ | 100  | 1    | _    |
| 2    | b        | $\{a, t\}$ | 2    | 1    | 51   |
| 3    | а        | $\{t\}$    | 2    | 1    | 3    |

## If we let $g[a] \leftarrow \min\{g[a], g[b] + c(b, a)\}$

より短い方のコストを g[a] に保持すれば...

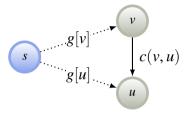


| Step | Expanded | OPEN       | g[a] | g[b] | g[t] |
|------|----------|------------|------|------|------|
| 0    |          | $\{s\}$    | —    | —    | —    |
| 1    | S        | $\{a, b\}$ | 100  | 1    | —    |
| 2    | b        | $\{a, t\}$ | 2    | 1    | 51   |
| 3    | a        | $\{t\}$    | 2    | 1    | 3    |
| 4    | t        | Ø          | 2    | 1    | 3    |

Solution  $s \rightarrow b \rightarrow a \rightarrow t$ : cost=3 (shortest path)

#### **DISJKSTRA'S ALGORITHM: GRAPH SEARCH STRATEGY**

#### for each of the three possible cases

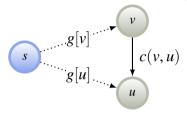


Recall the three cases when a successor *u* of a node *v* is encountered

- 1 *u* has never been generated  $\equiv u \notin OPEN \cup CLOSED$
- **2** *u* has been generated but not yet expanded  $\equiv u \in OPEN$
- 3 *u* has been generated and expanded  $\equiv u \in \text{CLOSED}$

#### **CASE 1. NODE** $u \notin OPEN \cup CLOSED$

#### The successor *u* has never been generated

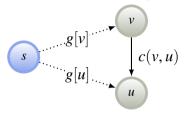


#### A brand-new node

Proceed in the same way as tree search

#### **CASE 2.** $u \in OPEN$

#### The successor *u* has been generated but not expanded

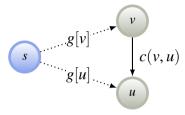


- ► If g[v] + c(v, u) < g[u], we have found a better path to u (via v) ⇒ Update  $g[u] \leftarrow g[v] + c(v, u)$  (also update Parent[u] to v)
- Otherwise, do nothing

Note: This operation is called **relaxation** of edge (v, u)

#### **CASE 3.** $u \in \text{CLOSED}$

#### The successor *u* has been expanded



In this case, (as we will prove later) it always holds that

$$g[u] \le g[v] + c(v, u)$$

→ In fact, we already have a shortest path to u, if  $u \in \text{CLOSED}$ (and g[u] = the cost of that shortest path)

► No more processing is necessary—just skip *u*.

#### DIJKSTRA'S SHORTEST PATH ALGORITHM

- 1 CLOSED  $\leftarrow \emptyset$
- 2 OPEN  $\leftarrow$  **new** PriorityQueue<sub>a</sub>
- $g[s] \leftarrow 0$
- $Insert_{o}(OPEN, s)$ 4

# OPEN: set of states generated but not expanded

#### loop do 5

- if IsEmpty(OPEN) then return "failure" 6
- $v \leftarrow \text{DeleteMin}_{o}(\text{OPEN})$ 7
- $CLOSED \leftarrow CLOSED \cup \{v\}$ 8
- if IsGoal(v) then return Solution(v, s)9
- $\operatorname{Expand}(v)$ 10

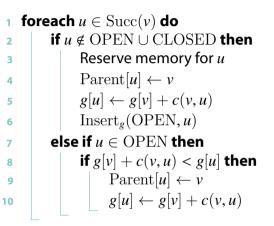
**N.B.** OPEN, Parent, and g are global variables (accessible from Expand and Solution)

# choose a node with the smallest g

# CLOSED: set of expanded states

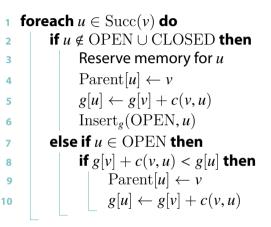
# put v into CLOSED

### procedure $\operatorname{Expand}(v)$ for dijkstra's algorithm



**N.B.** OPEN, Parent, and *g* are global variables

### procedure $\operatorname{Expand}(v)$ for dijkstra's algorithm



Cf. Expand(v) for tree search

| 1 | foreach $u \in \operatorname{Succ}(v)$ do         |
|---|---------------------------------------------------|
| 2 | Reserve memory for <i>u</i>                       |
| 3 | $\operatorname{Parent}[u] \leftarrow v$           |
| 4 | $g[u] \leftarrow g[v] + c(v, u)$                  |
| 5 | $\operatorname{Insert}_g(\operatorname{OPEN}, u)$ |
|   |                                                   |

**N.B.** OPEN, Parent, and *g* are global variables

#### **PROPERTIES OF DIJKSTRA'S ALGORITHM**

In any state space graph (which may or may not be a tree), Dijkstra's algorithm enjoys

#### Completeness

Dijkstra's algorithm never fails to find a solution

#### Admissibility

The solution found by Dijkstra's algorithm is optimal