
3010

ARTIFICIAL INTELLIGENCE
Lecture 2 Dijkstra’s shortest path algorithm

Masashi Shimbo

2019-05-13

License: cba CC BY-SA 4.0 except where noted

https://creativecommons.org/licenses/by-sa/4.0/


2

TODAY’S AGENDA

▶ Uniform-cost search (to consider edge weights) for trees
▶ Dijkstra’s algorithm (for non-tree graphs)



Uniform-cost Search for Trees



4

BREADTH-/DEPTH-FIRST SEARCH ALGORITHMS

Breadth-first search expands shallowest nodes first
Depth-first search expands deepest nodes first

In both algorithms, edge (=action) costs are ignored

å they are not admissible if edge costs vary



5

“UNIFORM-COST TREE SEARCH” EXPANDS NODESWITH
THE CHEAPEST COST FIRST

To make this possible,

1 For each node v, maintain the path cost from the initial node

g[v] = path cost from the initial state to v

2 Use a priority queue to implement the OPEN list
— to select the node with the minimum g-value from OPEN



6

PRIORITY QUEUE

▶ Has an associated function (priority function) g that determines
the priority g[v] of each item v in the list

g-value = low =⇒ priority = high

▶ Allows retrieval of an item with theminimum g-value



7

PRIORITY QUEUE
Two functions for manipulating priority queue Pg:

Insertg(Pg, v)
Put item v in Pg

DeleteMing(Pg)
Remove and return an item with the minimum g-value from Pg

å returned item v is such that

v = argmin
u∈Pg

g[u]

before its removal



8

UNIFORM-COST SEARCH FOR TREES
1 OPEN← new List PriorityQueueg

2 g[s]← 0

3 Insert Insertg(OPEN, s)
4 loop do

5 if IsEmpty(OPEN) then return “failure”
6 v← RemoveOne DeleteMing(OPEN)

7 if IsGoal(v) then return Solution(v, s)
8 Expand(v)

N.B. OPEN, g, and Parent are global variables



9

procedure Expand(v)
nowmaintains the cost g from the initial state

Input : v: node to expand
Output : set of successors of v

1 foreach node u ∈ Succ(v) do
2 Reserve memory for node u
3 Parent[u]← v
4 g[u]← g[v] + c(v, u)
5 Insert Insertg(OPEN, u)

N.B. OPEN, g, and Parent are global variables



10

function Expand(v)
s

v

g[v]

u1 u2 u3

c(v, u1) c(v, u2) c(v, u3)

N.B. OPEN, g, and Parent are global variables



11

function Expand(v)

Succ(v)

s

v

g[v]

u1 u2 u3

c(v, u1) c(v, u2) c(v, u3)

N.B. OPEN, g, and Parent are global variables



12

function Expand(v)

Succ(v)

s

v

g[v]

u1 u2 u3

Parent[u1] ← v Parent[u2] ← v Parent[u3] ← v

c(v, u1) c(v, u2) c(v, u3)

N.B. OPEN, g, and Parent are global variables



13

function Expand(v)

Succ(v)

s

v

g[v]

u1 u2 u3

Parent[u1] ← v
g[u1] ← g[v] + c(v, u1)

Parent[u2] ← v
g[u2] ← g[v] + c(v, u2)

Parent[u3] ← v
g[u3] ← g[v] + c(v, u3)

c(v, u1) c(v, u2) c(v, u3)

N.B. OPEN, g, and Parent are global variables



14

UNIFORM-COST SEARCH ALGORITHM FOR TREES
1 function UnformCostSearch(s)

2 OPEN← new PriorityQueueg

3 g[s]← 0

4 Insertg(OPEN, s)
5 loop do
6 if IsEmpty (OPEN) then
7 return “failure”

8 v← DeleteMing(OPEN)

9 if IsGoal(v) then
10 return Solution(v, s)
11 Expand(v)

1 procedure Expand(v)

2 foreach u ∈ Succ(v) do
3 Reserve memory for u
4 Parent[u]← v
5 g[u]← g[v] + c(v, u)
6 Insertg(OPEN, u)



Dijkstra’s
shortest-path algorithm

ダイクストラの最短経路アルゴリズム

Dijkstra’s
shortest-path algorithm

ダイクストラの最短経路アルゴリズム

Photo of Edsger J. Dijkstra © Hamilton Richards / CC BY-SA 3.0 / GFDL

https://en.wikipedia.org/wiki/File:Edsger_Wybe_Dijkstra.jpg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License


16

TREES

There exists exactly one path from the
initial node to each node

s

GRAPHS

There can be many paths from the
initial node to a node

s



17

TREES

There exists exactly one path from the
initial node to each node

s

GRAPHS

There can be many paths from the
initial node to a node

s

How does the difference affect search algorithms?



18

SHORTEST-PATH SEARCH IN A TREE

For every node, there is only one path from the initial node s

å The first-found path to a node is the only path to the node

å of course, it is also the shortest path to the node

These do not apply to general (= non-tree) graphs



19

SHORTEST-PATH SEARCH IN A GENERAL GRAPH
The first-found path to a node may not be the shortest

s

v u

1

1

10

After s is expanded and u is generated,

g[u] = c(s, u) = 10

But path s→ u is not the shortest path! (s→ v→ u is)



20

GRAPH SEARCH: NODE EXPANSION

s

v

u

g[v]

g[u]
c(v, u)

When a function call Expand(v,OPEN) tries to
generate a successor u of v, three cases are possible:

1 u has never been generated

å u < OPEN ∪ CLOSED

2 u has been generated but not yet expanded

å u ∈ OPEN

3 u has been generated and expanded

å u ∈ CLOSED

å We need to distinguish these cases

Do we have sufficient information to do so? No



21

OPEN AND EXPANDEDNODES

OPEN = nodes at the frontier

expanded nodesCLOSED = expanded nodes



22

OPEN AND EXPANDEDNODES

OPEN = nodes at the frontier

expanded nodesCLOSED = expanded nodes



23

OPEN AND EXPANDEDNODES

OPEN = nodes at the frontier

expanded nodes

CLOSED = expanded nodes

So far, we have not kept record of expanded nodes at all
— they were simply taken out of OPEN after expansion



24

OPEN AND EXPANDEDNODES

OPEN = nodes at the frontier

expanded nodes

CLOSED = expanded nodes

So far, we have not kept record of expanded nodes at all
— they were simply taken out of OPEN after expansion

å Let’s keep these nodes in a set called CLOSED



25

GRAPH SEARCH: NODE EXPANSION

s

v

u

g[v]

g[u]
c(v, u)

If expanded nodes are kept in CLOSED, the three
cases can be restated:

1 u has never been generated

å u < OPEN ∪ CLOSED

2 u has been generated but not yet expanded

å u ∈ OPEN

3 u has been generated and expanded

å u ∈ CLOSED



26

GRAPH SEARCH: NODE EXPANSION

s

v

u

g[v]

g[u]
c(v, u)

If expanded nodes are kept in CLOSED, the three
cases can be restated:

1 u has never been generated

å u < OPEN ∪ CLOSED

2 u has been generated but not yet expanded

å u ∈ OPEN

3 u has been generated and expanded

å u ∈ CLOSED



27

GRAPH SEARCH: NODE EXPANSION

s

v

u

g[v]

g[u]
c(v, u)

If expanded nodes are kept in CLOSED, the three
cases can be restated:

1 u has never been generated

å u < OPEN ∪ CLOSED

2 u has been generated but not yet expanded

å u ∈ OPEN

3 u has been generated and expanded

å u ∈ CLOSED



28

EXAMPLE
What happens if we run uniform-cost tree search in a graph?

s a

b t

initial state

goal state

100

1 1

50

1

▶ 3 paths from s to t:

▶ s→ a→ t
▶ s→ b→ t
▶ s→ b→ a→ t

▶ Shortest path is s→ b→ a→ t with cost=3



29

EXAMPLE
What happens if uniform-cost tree search is run in a non-tree graph?

s a

b t

initial state

goal state

100

1 1

50

1

Step Expanded OPEN g[a] g[b] g[t]
0 {s} − − −

1 s {a, b} 100 1 −
2 b {a, t} ? 1 51



30

EXAMPLE
What happens if uniform-cost tree search is run in a non-tree graph?

s a

b t

initial state

goal state

100

1 1

50

1

Step Expanded OPEN g[a] g[b] g[t]
0 {s} − − −
1 s {a, b} 100 1 −

2 b {a, t} ? 1 51



31

EXAMPLE
What happens if uniform-cost tree search is run in a non-tree graph?

s a

b t

initial state

goal state

100

1 1

50

1

Step Expanded OPEN g[a] g[b] g[t]
0 {s} − − −
1 s {a, b} 100 1 −
2 b {a, t} ? 1 51



32

Suppose we kept the value of g[a] intact. . .
仮に g[a]を更新しなかったとすると…

s a

b t

initial state

goal state

100

1 1

50

1

Step Expanded OPEN g[a] g[b] g[t]
0 {s} − − −
1 s {a, b} 100 1 −
2 b {a, t} 100 1 51

3 t {a} 100 1 51

Solution s→ b→ t: cost=51 (not the shortest path)



33

Suppose we kept the value of g[a] intact. . .
仮に g[a]を更新しなかったとすると…

s a

b t

initial state

goal state

100

1 1

50

1

Step Expanded OPEN g[a] g[b] g[t]
0 {s} − − −
1 s {a, b} 100 1 −
2 b {a, t} 100 1 51
3 t {a} 100 1 51

Solution s→ b→ t: cost=51 (not the shortest path)



34

If we let g[a]← min{g[a], g[b] + c(b, a)}
より短い方のコストを g[a]に保持すれば…

s a

b t

initial state

terminal state

100

1 1

50

1

Step Expanded OPEN g[a] g[b] g[t]
0 {s} − − −
1 s {a, b} 100 1 −
2 b {a, t} 2 1 51

3 a {t} 2 1 3
4 t ∅ 2 1 3

Solution s→ b→ a→ t: cost=3 (shortest path)



35

If we let g[a]← min{g[a], g[b] + c(b, a)}
より短い方のコストを g[a]に保持すれば…

s a

b t

initial state

terminal state

100

1 1

50

1

Step Expanded OPEN g[a] g[b] g[t]
0 {s} − − −
1 s {a, b} 100 1 −
2 b {a, t} 2 1 51
3 a {t} 2 1 3

4 t ∅ 2 1 3

Solution s→ b→ a→ t: cost=3 (shortest path)



36

If we let g[a]← min{g[a], g[b] + c(b, a)}
より短い方のコストを g[a]に保持すれば…

s a

b t

initial state

terminal state

100

1 1

50

1

Step Expanded OPEN g[a] g[b] g[t]
0 {s} − − −
1 s {a, b} 100 1 −
2 b {a, t} 2 1 51
3 a {t} 2 1 3
4 t ∅ 2 1 3

Solution s→ b→ a→ t: cost=3 (shortest path)



37

DISJKSTRA’S ALGORITHM: GRAPH SEARCH STRATEGY
for each of the three possible cases

s

v

u

g[v]

g[u]
c(v, u)

Recall the three cases when a successor u of a node v is encountered

1 u has never been generated ≡ u < OPEN ∪ CLOSED

2 u has been generated but not yet expanded ≡ u ∈ OPEN

3 u has been generated and expanded ≡ u ∈ CLOSED



38

CASE 1. NODE u < OPEN ∪ CLOSED
The successor u has never been generated

s

v

u

g[v]

g[u]
c(v, u)

A brand-new node

å Proceed in the same way as tree search



39

CASE 2. u ∈ OPEN
The successor u has been generated but not expanded

s

v

u

g[v]

g[u]
c(v, u)

▶ If g[v] + c(v, u) < g[u], we have found a better path to u (via v)

å Update g[u]← g[v] + c(v, u) (also update Parent[u] to v)

▶ Otherwise, do nothing

Note: This operation is called relaxation of edge (v, u)



40

CASE 3. u ∈ CLOSED
The successor u has been expanded

s

v

u

g[v]

g[u]
c(v, u)

In this case, (as we will prove later) it always holds that

g[u] ≤ g[v] + c(v, u)

å In fact, we already have a shortest path to u, if u ∈ CLOSED
(and g[u] = the cost of that shortest path)

å No more processing is necessary—just skip u.



41

DIJKSTRA’S SHORTEST PATH ALGORITHM
1 CLOSED← ∅ # CLOSED: set of expanded states

2 OPEN← new PriorityQueueg

3 g[s]← 0

4 Insertg(OPEN, s) # OPEN: set of states generated but not expanded

5 loop do
6 if IsEmpty(OPEN) then return “failure”
7 v← DeleteMing(OPEN) # choose a node with the smallest g

8 CLOSED← CLOSED ∪ {v} # put v into CLOSED

9 if IsGoal(v) then return Solution(v, s)
10 Expand(v)

N.B. OPEN, Parent, and g are global variables (accessible from Expand and Solution)



42

procedure Expand(v) FOR DIJKSTRA’S ALGORITHM

1 foreach u ∈ Succ(v) do
2 if u < OPEN ∪ CLOSED then
3 Reserve memory for u
4 Parent[u]← v
5 g[u]← g[v] + c(v, u)
6 Insertg(OPEN, u)
7 else if u ∈ OPEN then
8 if g[v] + c(v, u) < g[u] then
9 Parent[u]← v

10 g[u]← g[v] + c(v, u)

N.B. OPEN, Parent, and g are global variables



43

procedure Expand(v) FOR DIJKSTRA’S ALGORITHM

1 foreach u ∈ Succ(v) do
2 if u < OPEN ∪ CLOSED then
3 Reserve memory for u
4 Parent[u]← v
5 g[u]← g[v] + c(v, u)
6 Insertg(OPEN, u)
7 else if u ∈ OPEN then
8 if g[v] + c(v, u) < g[u] then
9 Parent[u]← v

10 g[u]← g[v] + c(v, u)

Cf. Expand(v) for tree search

1 foreach u ∈ Succ(v) do
2 Reserve memory for u
3 Parent[u]← v
4 g[u]← g[v] + c(v, u)
5 Insertg(OPEN, u)

N.B. OPEN, Parent, and g are global variables



44

PROPERTIES OF DIJKSTRA’S ALGORITHM

In any state space graph (which may or may not be a tree), Dijkstra’s
algorithm enjoys

Completeness
Dijkstra’s algorithm never fails to find a solution

Admissibility
The solution found by Dijkstra’s algorithm is optimal


	Top
	Uniform-cost Tree Search
	Dijkstra's algorithm
	Tree vs. graph
	Algorithm
	Properties


