ARTIFICIAL INTELLIGENCE

Lecture 2 Dijkstra's shortest path algorithm

Masashi Shimbo

2019-05-13

License: (a) (a) CC BY-SA 4.0 except where noted

TODAY'S AGENDA

- ► Uniform-cost search (to consider edge weights) for trees
- ► Dijkstra's algorithm (for non-tree graphs)

Uniform-cost Search for Trees

BREADTH-/DEPTH-FIRST SEARCH ALGORITHMS

Breadth-first search expands shallowest nodes first **Depth-first search** expands deepest nodes first

In both algorithms, edge (=action) costs are ignored

they are not admissible if edge costs vary

4

"UNIFORM-COST TREE SEARCH" EXPANDS NODES WITH THE CHEAPEST COST FIRST

To make this possible,

 \blacksquare For each node v, maintain the path cost from the initial node

g[v] = path cost from the initial state to v

- 2 Use a **priority queue** to implement the OPEN list
 - to select the node with the minimum g-value from OPEN

PRIORITY QUEUE

► Has an associated function (**priority function**) g that determines the priority g[v] of each item v in the list

$$g$$
-value = low \implies priority = high

► Allows retrieval of an item with the **minimum** *g*-value

PRIORITY QUEUE

Two functions for manipulating priority queue P_g :

 $\operatorname{Insert}_{\underline{g}}(P_g, v)$

Put item v in P_g

 $\mathrm{DeleteMin}_{g}(P_{g})$

Remove and return an item with the minimum g-value from P_g

 \rightarrow returned item v is such that

$$v = \operatorname*{argmin}_{u \in P_g} g[u]$$

before its removal

UNIFORM-COST SEARCH FOR TREES

- 1 OPEN ← **new** List PriorityQueue,
- $\mathbf{g}[\mathbf{s}] \leftarrow 0$
- 3 Insert Insert_g (OPEN, s)
- 4 loop do
- if IsEmpty(OPEN) then return "failure"
- $v \leftarrow \text{RemoveOne DeleteMin}_g(\text{OPEN})$
- if IsGoal(v) then return Solution(v, s)
- Expand(v)

N.B. OPEN, g, and Parent are global variables

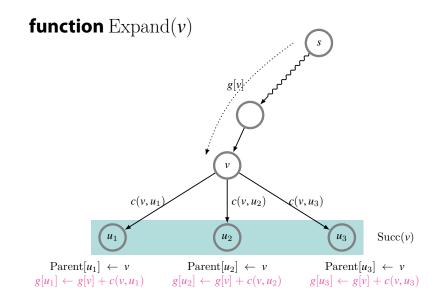
```
procedure Expand(v)
```

now maintains the cost g from the initial state

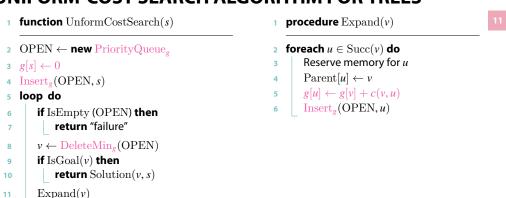
Input : v: node to expand **Output**: set of successors of v

```
1 foreach node u \in \operatorname{Succ}(v) do
2 Reserve memory for node u
3 Parent[u] \leftarrow v
4 g[u] \leftarrow g[v] + c(v, u)
5 Insert Insert_g(\operatorname{OPEN}, u)
```

N.B. OPEN, g, and Parent are global variables

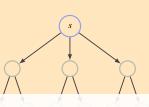


UNIFORM-COST SEARCH ALGORITHM FOR TREES



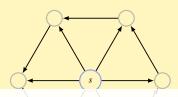
TREES

There exists exactly one path from the initial node to each node



GRAPHS

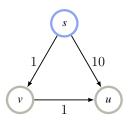
There can be many paths from the initial node to a node



How does the difference affect search algorithms?

SHORTEST-PATH SEARCH IN A GENERAL GRAPH

The first-found path to a node may not be the shortest



After s is expanded and u is generated,

$$g[u] = c(s, u) = 10$$

But path $s \to u$ is not the shortest path! ($s \to v \to u$ is)

SHORTEST-PATH SEARCH IN A TREE

For every node, there is only one path from the initial node s

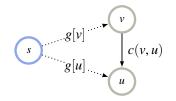
- The first-found path to a node is the only path to the node
- of course, it is also the shortest path to the node

These do not apply to general (= non-tree) graphs

GRAPH SEARCH: NODE EXPANSION

When a function call Expand(v, OPEN) tries to generate a successor u of v, three cases are possible:

1 *u* has never been generated

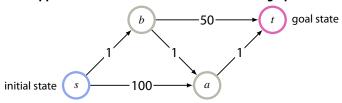


- \mathbf{z} u has been generated but not yet expanded
- \mathbf{I} u has been generated and expanded
- We need to distinguish these cases
 Do we have sufficient information to do so? No

► Let's keep these nodes in a set called CLOSED

EXAMPLE

What happens if we run uniform-cost tree search in a graph?



 \blacktriangleright 3 paths from s to t:

ightharpoonup s
ightharpoonup a
ightharpoonup t

ightharpoonup s
ightharpoonup b
ightharpoonup s
ightharpoonup b
ightharpoonup t

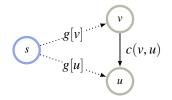
ightharpoonup s
ightharpoonup b
ightharpoonup s
ightharpoonup b
ightharpoonup a
ightharpoonup a
ightharpoonup t

► Shortest path is $s \rightarrow b \rightarrow a \rightarrow t$ with cost=3

GRAPH SEARCH: NODE EXPANSION

17

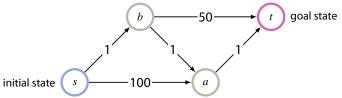
If expanded nodes are kept in CLOSED, the three cases can be restated:



- 1 *u* has never been generated
 - \longrightarrow $u \notin OPEN \cup CLOSED$
- \mathbf{z} u has been generated but not yet expanded
 - $u \in OPEN$
- \mathbf{I} u has been generated and expanded
 - $u \in CLOSED$

EXAMPLE

What happens if uniform-cost tree search is run in a non-tree graph?

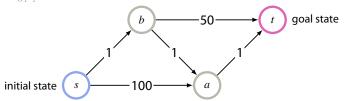


Step	Expanded	OPEN	g[a]	g[b]	g[t]
0		{ <i>s</i> }	_	_	_
1	S	$\{a, b\}$	100	1	_
2	b	$\{a, t\}$?	1	51

22

Suppose we kept the value of g[a] intact. . .

仮にg[a]を更新しなかったとすると...

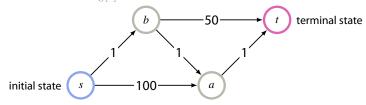


Step	Expanded	OPEN	g[a]	g[b]	g[t]
0		{ <i>s</i> }	_	_	_
1	S	$\{a, b\}$	100	1	_
2	b	$\{a, t\}$	100	1	51
3	t	<i>{a}</i>	100	1	51

Solution $s \rightarrow b \rightarrow t$: cost=51 (not the shortest path)

If we let $g[a] \leftarrow \min\{g[a], g[b] + c(b, a)\}$

より短い方のコストを g[a] に保持すれば...

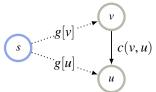


Step	Expanded	OPEN	g[a]	g[b]	g[t]
0		{ <i>s</i> }	_	_	_
1	S	$\{a, b\}$	100	1	_
2	b	$\{a, t\}$	2	1	51
3	a	{ <i>t</i> }	2	1	3
4	t	Ø	2	1	3

Solution $s \rightarrow b \rightarrow a \rightarrow t$: cost=3 (shortest path)

DISJKSTRA'S ALGORITHM: GRAPH SEARCH STRATEGY

for each of the three possible cases

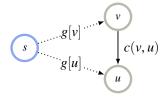


Recall the three cases when a successor u of a node v is encountered

- 1 u has never been generated $\equiv u \notin OPEN \cup CLOSED$
- **2** *u* has been generated but not yet expanded $\equiv u \in OPEN$
- **3** u has been generated and expanded $\equiv u \in CLOSED$

CASE 1. NODE $u \notin OPEN \cup CLOSED$

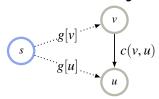
The successor \boldsymbol{u} has never been generated



A brand-new node

Proceed in the same way as tree search

The successor u has been generated but not expanded

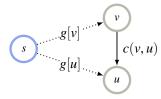


- If g[v] + c(v, u) < g[u], we have found a better path to u (via v)
 - ightharpoonup Update $g[u] \leftarrow g[v] + c(v, u)$ (also update $\operatorname{Parent}[u]$ to v)
- ► Otherwise, do nothing

Note: This operation is called **relaxation** of edge (v, u)

CASE 3. $u \in \text{CLOSED}$

The successor \boldsymbol{u} has been expanded



In this case, (as we will prove later) it always holds that

$$g[u] \le g[v] + c(v, u)$$

- In fact, we already have a shortest path to u, if $u \in \text{CLOSED}$ (and g[u] = the cost of that shortest path)
- \rightarrow No more processing is necessary—just skip u.

DIJKSTRA'S SHORTEST PATH ALGORITHM

```
1 CLOSED \leftarrow \emptyset # CLOSED: set of expanded states
2 OPEN \leftarrow new PriorityQueue<sub>g</sub>
3 g[s] \leftarrow 0
4 Insert<sub>g</sub>(OPEN, s) # OPEN: set of states generated but not expanded
5 loop do
6 if IsEmpty(OPEN) then return "failure"
7 v \leftarrow DeleteMin<sub>g</sub>(OPEN) # choose a node with the smallest g
8 CLOSED \leftarrow CLOSED \cup {v} # put v into CLOSED
9 if IsGoal(v) then return Solution(v, s)
10 Expand(v)
```

N.B. OPEN, Parent, and *g* are global variables (accessible from Expand and Solution)

procedure $\operatorname{Expand}(\nu)$ for dijkstra's algorithm

1 foreach $u \in Succ(v)$ do if $u \notin OPEN \cup CLOSED$ then Reserve memory for *u* $Parent[u] \leftarrow v$ $g[u] \leftarrow g[v] + c(v, u)$ Cf. $\operatorname{Expand}(v)$ for tree search $Insert_{\sigma}(OPEN, u)$ foreach $u \in \operatorname{Succ}(v)$ do Reserve memory for *u* else if $u \in OPEN$ then $Parent[u] \leftarrow v$ **if** g[v] + c(v, u) < g[u] **then** $g[u] \leftarrow g[v] + c(v, u)$ $Parent[u] \leftarrow v$ 9 $\operatorname{Insert}_g(\operatorname{OPEN}, u)$

N.B. OPEN, Parent, and g are global variables

М

PROPERTIES OF DIJKSTRA'S ALGORITHM

29

In any state space graph (which may or may not be a tree), Dijkstra's algorithm enjoys

Completeness

Dijkstra's algorithm never fails to find a solution

Admissibility

The solution found by Dijkstra's algorithm is optimal