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“Relaxing” operation for edge (v, u)
Maintaining the best path from the initial node

sinitial node u

g[u] before update

v
g[v] c(v,

u)

g[v] + c(v, u) = cost of the newly found path via v

1 if g[v] + c(v, u) < g[u] then
2 g[u]← g[v] + c(v, u) # Update g[u] if a shorter path is found

3 Parent[u]← v # Update Parent[u] to the parent node v
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Property of g[u] and the “relax” operation

Let g∗(u) denote the cost of the shortest path to node u.

Upper-boundedness
For any node u, g[u] ≥ g∗(u).
Once we have g[u] = g∗(u), g[u] does not change anymore.

Convergence
If s⇝ v→ u is a shortest path from s to u (and thus s⇝ v is a shortest path
from s to v), and if g[v] = g∗(v), after relaxing (v, u), it holds that g[u] = g∗(u).
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Theorem

At any moment during a run of Dijkstra’s shortest path algorithm, for
any node v in CLOSED,

g[v] = g∗(v)
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Proof of the theorem:

At any moment during a run of Dijkstra’s shortest path algorithm, the following
invariant holds.

For any node v in CLOSED,

g[v] = g∗(v)

▶ In the beginnning of the algorithm, CLOSED is empty. Hence the statement
holds.

▶ Because g[s] = g∗(s) = 0, when s enters CLOSED, the statement still holds.
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Proof after s has entered CLOSED
We use the “proof by contradiction” technique

Assume on the contrary that

“at somepoint during a run of Dijkstra’s algorithm, a node u such that g[u] >
g∗(u) enters CLOSED”

and
show that this leads to a contradiction.

Let u be the first such node during the run, and consider the moment immediately
before u enters CLOSED (That is, u is on OPEN and has not entered CLOSED yet)

Thus, at this moment, for all v in CLOSED, we have

g[v] = g∗(v)
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Now consider a shortest path from s to u.

Along this path, there exists at least one node not placed in CLOSED.
—Indeed, u is not in CLOSED (yet)

Let y be one such node closest to s along this path, and let its parent
be x. (Note: It may be that x = s or y = u)

By assumption, x ∈ CLOSED. Hence g[x] = g∗(x)

On the other hand, because either y precedes u along this shortest
path or y = u, we have

g∗(y) ≤ g∗(u)
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When x entered CLOSED with g[x] = g∗(x), edge (x, y)must have
been “relaxed.” It follows that

g[y] = g∗(x) + c(x, y) = g∗(y) (1)

Because u is on OPEN and about to be expanded, and y is also on
OPEN (or y = u), we have

g[u] ≤ g[y] (2)

Combining Eqs. (1) and (2), and taking the assumption g∗(u) < g[u]
into account,

g∗(u) < g[u] ≤ g[y] = g∗(y)

This contradicts the inequality g∗(y) ≤ g∗(u) shown in the previous
slide.
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Thus, we have established the theorem:

At any moment during a run of Dijkstra’s algorithm, for any node v in CLOSED, we
have

g[v] = g∗(v).

(That is, for all nodes in CLOSED, we have already found a shortest path to them.)

No need to do anything when a successor node v is already closed.

Moreover, when a goal node t ∈ G is closed, it has g[t] = g∗(t).


