
3010

ARTIFICIAL INTELLIGENCE
Lecture 3 A* search

Masashi Shimbo

2019-05-15

License: cba CC BY-SA 4.0 except where noted

2

Today’s agenda

▶ Heuristic evaluation function

▶ The A* algorithm

3

Heuristic search ヒューリスティック探索

4

Heuristic search: Motivation ヒューリスティック探索: 動機

Even if we have some “knowledge” about a given problem, Dijkstra’s
algorithm doesn’t have a means to take advantage of it.

与えられた問題に対するなんらかの事前知識があっても,ダイクストラ法では活用することができない

Here is a motivating example…

たとえば…

https://creativecommons.org/licenses/by-sa/4.0/

5

Even if you know the goal state is located at the lower right corner…目標

節点が右下隅にあることがわかっていても…

same g-value; Dijkstra’s
algorithm thinks these
are equally promising
nodes

Dijkstra’s algorithm does not take this information into account ダイクスト
ラ法はこの情報を活用した探索を行わない

6

Heuristic search ヒューリスティック探索
Also called “informed” search「情報付き」探索とも呼ばれる

Search using domain- (problem-)specific knowledge, or heuristics
解きたい問題に関する「知識」/「ヒューリスティック」を活用した探索

But what kind of “knowledge”?
では,どんな「知識」が活用できる?

7

Heuristic evaluation function h(v)

It is assumed that the knowledge about the problem is given as a form of heuristic
evaluation function h(v)
問題に関する知識は「ヒューリスティック評価関数」h(v)という形で与えられると仮定する

Sometimes simply called a heuristic function, or heuristic
単に「ヒューリスティック関数」とか「ヒューリスティック」と呼ばれることもある

h(v) = estimated cost of the cheapest path from node v
to a terminal node
h(v)の意味は「節点 vから一番近い (=コストが低い)目標節点までの経路コス

トの見積もり」

8
s

initial state

v

t

goal state

h∗(v): optimal path cost from v

h(v): estimated path cost

9

Admissible heuristic 適格なヒューリスティック関数
An important class of heuristic function
A heuristic function h is said to be admissible

For every node v, h(v) never overestimates the actual cheapest cost h∗(v) to reach a
goal from v

h(v) ≤ h∗(v) for every node v.

h gives optimistic estimates of actual cost h∗.

10

Admissible heuristics and the A* algorithm
適格なヒューリスティック関数と A*

Why admissible heuristics matter?
なぜヒューリスティック関数の適格性が重要か?

… Because the A* algorithm (described later) is admissible (=
guaranteed to find a shortest path) if the used heuristic function h
is admissible.
用いるヒューリスティック関数 hが適格なら A*は適格 (最短経路を発見することが保証される)

11

How dowe build an admissible heuristic?

“Relaxed problems” approach:

1 Make an easier problem RP by removing constraints in the original
problem OP.

2 Find the optimal solution for RP
3 Use the cost of the solution as heuristic h for OP.

The optimal solution (with cost h∗) for OP is also a solution of RP (but
not necessarily optimal in RP; better solutions may exist)

å h ≤ h∗

12

Gridworld

13

Gridworld
Many obstacles exist障害物が多数存在

initial state

goal state

14

Gridworld
Many obstacles exist障害物が多数存在

initial state

goal state

15

Gridworld: relaxed problem 緩和問題
Assume obstacles do not exist障害物が一切存在しないと仮定

initial state

goal state

16

Gridworld: relaxed problem 緩和問題
Assume obstacles do not exist障害物が一切存在しないと仮定

initial state

goal state

“Manhattan distance”

17

Gridworld: Manhattan-distance heuristic

initial state

goal state

18

Gridworld: Manhattan-distance heuristic

initial state

goal state

19

Gridworld: Manhattan-distance heuristic

initial state

goal state

20

Gridworld: Manhattan-distance heuristic

initial state

goal state

21

Gridworld: Manhattan-distance heuristic

initial state

goal state

22

Gridworld: Manhattan-distance heuristic

initial state

goal state

23

Gridworld: Manhattan-distance heuristic
Computation is easy

v: arbitrary state

Let

(x, y) coordinates of state v
(xt, yt) coordinates of the goal state

Then,

h(v) = |x− xt|+ |y− yt|

24

Admissible heuristic via relaxed problems:
Another example

Manhattan distance heuristic for (n2 − 1)-puzzles:

Sum of the Manhattan distance from each tile to its goal position.

Relaxed problem: tiles can overlap with each other.

25

Eight-puzzle: Manhattan distance heuristic

1 3
8 6 7
4 5 2

1 2 3
4 5 6
7 8

1

1move

2

3moves

3

0moves

4

1move

5

1move

6

1move

7

3moves

8

2moves

h = 12

26

Requirement for heuristic functions:
Theymust be efficiently computable
ヒューリスティック関数には「簡単に計算できること」が求められる

No use if computing a heuristic function takes equal or more time and
space than actually searching the state space, no matter how accurate
its estimates are.

どんな正確なヒューリスティック関数でも,実際の探索を行う以上の時間やメモリが計算に必要なら,そもそも使う

意味がない

27

Heuristic evaluation function h: Summary

▶ h associates a non-negative real number h(v) to each state v

▶ h(v) is an estimate of the actual cheapest cost h∗(v) necessary to
reach a goal state from state v

▶ h must be efficiently computable

▶ h is said to be admissible if h(v) ≤ h∗(v) for every state v

▶ One way to construct an admissible h is to consider relaxed
problems

28

The A* algorithm A*アルゴリズム

29

The A* algorithm
[Hart, Nilsson & Raphael 1968]

Idea

Use the sum of

▶ the path cost from the initial state to state v g[v]
▶ the estimated cost from v to a goal state h(v)

to evaluate how “promising” it is to expand state v.

30

Evaluation function f [v] of A*

f [v] = g[v] + h(v)

where

g[v] tentative minimum cost from the initial state to state v sから v

への,これまで見つかった経路のなかで最小のコスト

h(v) estimated cost from state v to the nearest goal state vから最も近

い目標節点への経路コストの見積もり

Idea:
f [v] smaller↔ v more promising
f が小さい節点ほど,より有望だ,とみなす

31

▶ g[v]: value may get updated if a better path from s to v is found
later

▶ h(v): once computed, the value will not change

▶ g[v]: upper-bound of the optimal cost g∗(v) (from s to v)
▶ h(v): lower-bound of the optimal cost h∗(v) (from v to goal t)

provided that h(v) is admissible.

32s

initial state

v

t

goal state

h∗(v): optimal path cost
from v

h(v): estimated
path cost

g∗(v): optimal
path cost to v

g[v]: tentative
path cost

33

A* subsumes Dijkstra’s shortest path algorithm as a
special case

A* reduces to Dijkstra’s algorithm if h(v) = 0 for every node v.

34

The A* algorithm

The algorithm is identical to Dijkstra’s, except

▶ OPEN is a priority queue with priority function f [v] = g[v] + h(v)
(not g[v]).

▶ For each generated node v, f [v] is recorded along with g[v].
▶ Nodes in CLOSED can be re-opened.

35

Priority queue
Two functions for manipulating priority queue P f :

Insert f (P f , v)
Put item v in P f

DeleteMin f (P f)
Remove and return an item with the minimum f -value from P f .
Thus, the returned item v is the one with

v = argmin
u∈P f

f [u]

before removal

36

How a node changes its status in A*
Closed nodes can be re-opened

Status Description

Unexplored

↓ (when a parent node is expanded)

OPEN the node is generated but not expanded

↓ ↑ (when the node itself is expanded)

CLOSED the node is generated and expanded

37

Dijkstra’s shortest path algorithm
Main routine

1 OPEN← new PriorityQueueg

2 g[s]← 0

3 Insertg(OPEN, s) # OPEN: set of states generated but not expanded

4 CLOSED← ∅ # CLOSED: set of expanded states

5 loop do
6 if IsEmpty(OPEN) then return “failure”
7 v← DeleteMing(OPEN) # choose a node with the smallest g

8 CLOSED← CLOSED ∪ {v} # put v in CLOSED

9 if IsGoal(v) then return Solution(v, s)
10 Expand(v)

38

The A* algorithm
Main routine

1 OPEN← new PriorityQueue f # priority is based on f = g + h

2 g[s]← 0; f [s]← h(s) # f [s] = g[s] + h(s) = 0 + h(s) = h(s)

3 Insert f (OPEN, s) # OPEN: set of states generated but not expanded

4 CLOSED← ∅ # CLOSED: set of expanded states

5 loop do
6 if IsEmpty(OPEN) then return “failure”
7 v← DeleteMin f (OPEN) # choose a node with the smallest f

8 CLOSED← CLOSED ∪ {v}
9 if IsGoal(v) then return Solution(v, s)

10 Expand(v)

39

procedure Expand(v) for Dijkstra’s algorithm

1 foreach u ∈ Succ(v) do
2 if u < OPEN ∪ CLOSED then # if u is a new state
3 Reserve memory for g[u], Parent[u]
4 g[u]← g[v] + c(v, u) # memorize g[u]

5 Parent[u]← v # also memorize Parent
6 Insertg(OPEN, u)
7 else if u ∈ OPEN then # “relax” edge (v, u) if u ∈ OPEN
8 if g[v] + c(v, u) < g[u] then # if it is better than the current path
9 g[u]← g[v] + c(v, u) # update g if path through (v, u) is shorter

10 Parent[u]← v # update Parent, too

40

procedure Expand(v) for A* algorithm

1 foreach u ∈ Succ(v) do
2 if u < OPEN ∪ CLOSED then # if u is a new state
3 Reserve memory for g[u], f [u], and Parent[u]
4 g[u]← g[v] + c(v, u); f [u]← g[u] + h(u) # memorize f [u] as well as g[u]

5 Parent[u]← v # also memorize Parent
6 Insert f (OPEN, u)
7 else if u ∈ OPEN then # “relax” edge (v, u) if u ∈ OPEN
8 if g[v] + c(v, u) < g[u] then # if path through (v, u) is shorter
9 g[u]← g[v] + c(v, u); f [u]← g[u] + h(u) # update g and f

10 Parent[u]← v # update Parent, too
11 else # if u ∈ CLOSED, “relax” edge (v, u) and re-open u if necessary
12 if g[v] + c(v, u) < g[u] then # if a cheaper path is found
13 g[u]← g[v] + c(v, u); f [u]← g[u] + h(u) # update g and f

14 Parent[u]← v # update Parent, too
15 CLOSED← CLOSED\{u} # then take u out of CLOSED
16 Insert f (OPEN, u) # and put it back into OPEN

41

A* and Dijkstra’s algorithm: Difference in Expand(v)
Case Dijkstra A*
u < OPEN
nor
u < CLOSED

g[u]← g[v] + c(v, u)
Insertg(OPEN, u)
Parent[u]← v

g[u]← g[v] + c(v, u)
f [u]← g[u] + h(u)
Insert f (OPEN, u)
Parent[u]← v

u ∈ OPEN if g[v] + c(v, u) < g[u] then
g[u]← g[v] + c(v, u)
Parent[u]← v

if g[v] + c(v, u) < g[u] then
g[u]← g[v] + c(v, u)
f [u]← g[u] + h(u)
Parent[u]← v

u ∈ CLOSED Do nothing
(always g[u] ≤ g[v] + c(v, u))

if g[v] + c(v, u) < g[u] then
g[u]← g[v] + c(v, u)
f [u]← g[u] + h(u)
CLOSED← CLOSED\{u}
Insert f (OPEN, u)
Parent[u]← v

v = node just expanded / u = a successor of v

42

Properties of A*

Assumptions
▶ At least one solution (path from the initial state to a goal state)

exists
▶ function h(·) is admissible

Completeness
A* never fails to find a solution

Admissibility
The solution found by A* is optimal

43g
h

Open node

Closed node

Expanded node

0
1

initial node

10 2

1

0 goal node

1 4

1 3

10

44

Exercise

Trace the execution of the A* algorithm on this graph. In particular,

1 Trace which nodes are on OPEN and which are on CLOSED
2 Compute the g-value of each node at each stage
3 In what order are nodes expanded?
4 How many iterations are necessary before termination?

If you still have time left, trace the behavior of Dijkstra’s algorithm (i.e.,
by setting h = 0 for all nodes) on the same graph

45

A*may reopen closed nodes

Cf. Dijkstra’s algorithm never reopens a node.

Is there a class of heuristic functions h such that A* does not open a
node more than once?

å Monotone heuristic functions

46

Monotone heuristic function
Heuristic function h is said to be monotone if

▶ h(v) ≤ c(v, u) + h(u) holds for every edge (v, u)
▶ h(t) = 0 for every goal node t

v

u

tgoal node

c(v, u)

h(v) h(u)

47

Monotonicity and admissibility

Monotonicity implies admissibility

h is monotone→ h is admissible

48

A* guided by monotone heuristic function h never re-opens a node

49

A* algorithm withmonotone h

Main routine—No change from the original A*

1 OPEN← new PriorityQueue f # priority is based on f

2 g[s]← 0

3 f [s]← h(s) # f [s] = g[s] + h(s) = h(s)

4 Insert f (OPEN, s) # OPEN: set of states generated but not expanded

5 CLOSED← ∅ # CLOSED: set of expanded states

6 loop do
7 if IsEmpty(OPEN) then return “failure”
8 v← DeleteMin f (OPEN) # choose a node with the smallest f

9 CLOSED← CLOSED ∪ {v}
10 if IsGoal(v) then return Solution(v, s)
11 Expand(v)

50

Procedure Expand(v)
for A* algorithmwhen h is monotone

1 foreach u ∈ Succ(v) do
2 if u < OPEN ∪ CLOSED then # if u is a new state
3 Reserve memory for g[u], f [u], and Parent[u]
4 g[u]← g[v] + c(v, u); f [u]← g[u] + h(u) # memorize f [u] as well as g[u]

5 Parent[u]← v # also memorize Parent
6 Insert f (OPEN, u)
7 else if u ∈ OPEN then # “relax” edge (v, u) if u ∈ OPEN
8 if g[v] + c(v, u) < g[u] then # if it gives a better path than the current one
9 g[u]← g[v] + c(v, u); f [u]← g[u] + h(u) # update g and f

10 Parent[u]← v # update Parent, too
11 else # if u ∈ CLOSED, “relax” edge (v, u) and re-open u if necessary
12 if g[v] + c(v, u) < g[u] then # if a cheaper path is found
13 g[u]← g[v] + c(v, u); f [u]← g[u] + h(u) # update g and f

14 Parent[u]← v # update Parent
15 CLOSED← CLOSED\{u} # take u out of CLOSED
16 Insert f (OPEN, u) # and put it back in OPEN

This test never succeeds if h is monotone

Thus, this part can be safely removed ifwe know h ismonotone
for sure

51

Dijkstra and A* withmonotone h: Difference in Expand(v)
Case Dijkstra A*
u < OPEN
nor
u < CLOSED

g[u]← g[v] + c(v, u)
Insertg(OPEN, u)
Parent[u]← v

g[u]← g[v] + c(v, u)
f [u]← g[u] + h(u)
Insert f (OPEN, u)
Parent[u]← v

u ∈ OPEN if g[v] + c(v, u) < g[u] then
g[u]← g[v] + c(v, u)
Parent[u]← v

if g[v] + c(v, u) < g[u] then
g[u]← g[v] + c(v, u)
f [u]← g[u] + h(u)
Parent[u]← v

u ∈ CLOSED Do nothing
(always g[u] ≤ g[v] + c(v, u))

Do nothing
(always g[u] ≤ g[v] + c(v, u))

v = node just expanded / u = a successor of v

52

How difficult is it to design amonotone heuristic
function?

Good News!

Almost all well-known “natural” heuristics (e.g., those computed from
relaxed problems) are monotone

531

initial node

10 2

1

0

goal node

1 4

1 3

10

Note: the heuristic used for the
exercise was artificially
constructed

It was

▶ admissible
▶ but notmonotone

	Top
	Agenda
	Heuristic evaluation function
	A*
	The A* algorithm
	Exercise

	Monotone heuristic function

