ARTIFICIAL INTELLIGENCE

Lecture 3 A* search

Masashi Shimbo

2019-05-15

License: @) CC BY-SA 4.0 except where noted

Today's agenda

Heuristic evaluation function

► The A* algorithm

Heuristic search: Motivation ヒューリスティック探索: 動機

Even if we have some "knowledge" about a given problem, Dijkstra's algorithm doesn't have a means to take advantage of it.

与えられた問題に対するなんらかの事前知識があっても,ダイクストラ法では活用することができない

Here is a motivating example...

たとえば...

Heuristic search La-UAFryorga

Even if you know the goal state is located at the lower right corner... Elements and the lower right corner...

節点が右下隅にあることがわかっていても...

Dijkstra's algorithm does not take this information into account ダイクスト ラ法はこの情報を活用した探索を行わない

Heuristic search Ea-UAFrance

Also called "informed" search 「情報付き」探索とも呼ばれる

Search using domain- (problem-)specific **knowledge**, or **heuristics**

解きたい問題に関する「知識」/「ヒューリスティック」を活用した探索

But what kind of "knowledge"?

では,どんな「知識」が活用できる?

Admissible heuristic 適格なヒューリスティック関数

An important class of heuristic function A heuristic function *h* is said to be **admissible**

\$

For every node v, h(v) never overestimates the actual cheapest cost $h^*(v)$ to reach a goal from v

$$\label{eq:hole} \begin{split} & \clubsuit \\ & h(v) \leq h^*(v) \quad \text{ for every node } v. \\ & \clubsuit \end{split}$$

h gives optimistic estimates of actual cost h^* .

Admissible heuristics and the A* algorithm

適格なヒューリスティック関数と A*

Why admissible heuristics matter?

なぜヒューリスティック関数の適格性が重要か?

••• Because the A* algorithm (described later) is admissible (= guaranteed to find a shortest path) if the used heuristic function *h* is admissible.

用いるヒューリスティック関数 h が適格なら A* は適格 (最短経路を発見することが保証される)

How do we build an admissible heuristic?

"Relaxed problems" approach:

- Make an easier problem *RP* by removing constraints in the original problem *OP*.
- **2** Find the optimal solution for *RP*
- **I** Use the cost of the solution as heuristic *h* for *OP*.

The optimal solution (with cost h^*) for OP is also a solution of RP (but not necessarily optimal in RP; better solutions may exist)

 $\blacktriangleright h \leq h^*$

Gridworld

Gridworld

Many obstacles exist 障害物が多数存在

Gridworld

Many obstacles exist 障害物が多数存在

Gridworld: relaxed problem 緩和問題

15

Gridworld: relaxed problem 緩和問題

Assume obstacles do not exist 障害物が一切存在しないと仮定

Gridworld: Manhattan-distance heuristic

Gridworld: Manhattan-distance heuristic

Gridworld: Manhattan-distance heuristic

Gridworld: Manhattan-distance heuristic

19

Gridworld: Manhattan-distance heuristic

Gridworld: Manhattan-distance heuristic

Gridworld: Manhattan-distance heuristic

Computation is easy

v: arbitrary state

Let

- (x, y) coordinates of state v
- (x_t, y_t) coordinates of the goal state

Then,

 $h(v) = |x - x_t| + |y - y_t|$

Admissible heuristic via relaxed problems: Another example

Manhattan distance heuristic for $(n^2 - 1)$ -puzzles:

23

Sum of the Manhattan distance from each tile to its goal position.

Ĵ

Relaxed problem: tiles can overlap with each other.

Requirement for heuristic functions: They must be efficiently computable

ヒューリスティック関数には「簡単に計算できること」が求められる

No use if computing a heuristic function takes equal or more time and space than actually searching the state space, no matter how accurate its estimates are.

どんな正確なヒューリスティック関数でも,実際の探索を行う以上の時間やメモリが計算に必要なら,そもそも使う 意味がない

Heuristic evaluation function h: Summary

- *h* associates a non-negative real number h(v) to each state v
- h(v) is an estimate of the actual cheapest cost h*(v) necessary to reach a goal state from state v
- ► *h* must be efficiently computable
- *h* is said to be **admissible** if $h(v) \le h^*(v)$ for every state *v*
- One way to construct an admissible h is to consider relaxed problems

The A* algorithm A* 7/13/274

The A* algorithm

[Hart, Nilsson & Raphael 1968]

Idea

Use the sum of

- the path cost from the initial state to state v g[v]
- the estimated cost from v to a goal state h(v)

to evaluate how "promising" it is to expand state v.

Evaluation function f[v] of **A***

f[v] = g[v] + h(v)

where

- g[v] tentative minimum cost from the initial state to state v s b v vへの, これまで見つかった経路のなかで最小のコスト
- h(v) estimated cost from state v to the nearest goal state v から最も近い目標節点への経路コストの見積もり

Idea:

f[v] smaller $\leftrightarrow v$ more promising

f が小さい節点ほど,より有望だ,とみなす

- ► *g*[*v*]: value may get updated if a better path from *s* to *v* is found later
- h(v): once computed, the value will not change
- g[v]: upper-bound of the optimal cost $g^*(v)$ (from s to v)
- *h*(*v*): lower-bound of the optimal cost *h*^{*}(*v*) (from *v* to goal *t*) provided that *h*(*v*) is admissible.

A* subsumes Dijkstra's shortest path algorithm as a special case

A* reduces to Dijkstra's algorithm if h(v) = 0 for every node v.

The A* algorithm

The algorithm is identical to Dijkstra's, except

- OPEN is a priority queue with priority function f[v] = g[v] + h(v) (not g[v]).
- For each generated node v, f[v] is recorded along with g[v].
- ► Nodes in CLOSED can be **re-opened**.

Priority queue

Two functions for manipulating priority queue P_f :

 $\operatorname{Insert}_f(P_f, v)$

Put item v in P_f

$DeleteMin_f(P_f)$

Remove and return an item with the minimum f-value from P_f . Thus, the returned item v is the one with

 $v = \operatorname*{argmin}_{u \in P_f} f[u]$

before removal

How a node changes its status in A*

Closed nodes can be re-opened

Status	Description
Unexplored	
\downarrow	(when a parent node is expanded)
OPEN	the node is generated but not expanded
\downarrow \uparrow	(when the node itself is expanded)
CLOSED	the node is generated and expanded

Dijkstra's shortest path algorithm

Main routine

- 1 OPEN \leftarrow **new** PriorityQueue_g
- 2 $g[s] \leftarrow 0$
- ³ Insert_g(OPEN, s)
- $\textbf{4} \ \text{CLOSED} \leftarrow \emptyset$
- 5 loop do
- 6 if IsEmpty(OPEN) then return "failure"
- 7 $v \leftarrow \text{DeleteMin}_g(\text{OPEN})$
- 8 CLOSED \leftarrow CLOSED $\cup \{v\}$
- **if** IsGoal(v) **then return** Solution(v, s)
- 10 Expand(v)

37

OPEN : set of states generated but not expanded

CLOSED : set of expanded states

- .
 - # choose a node with the smallest *g* # put *v* in CLOSED

The A* algorithm

Main routine

- 1 OPEN \leftarrow **new** PriorityQueue_f
- 2 $g[s] \leftarrow 0; f[s] \leftarrow h(s)$
- $3 \text{ Insert}_{f}(\text{OPEN}, s)$
- 4 CLOSED $\leftarrow \emptyset$
- 5 loop do
- 6 **if** IsEmpty(OPEN) **then return** "failure"
- 7 $v \leftarrow \text{DeleteMin}_f(\text{OPEN})$
- 8 CLOSED \leftarrow CLOSED $\cup \{v\}$
- 9 **if** IsGoal(v) **then return** Solution(v, s)
- 10 Expand(v)

priority is based on f = g + h

f[s] = g[s] + h(s) = 0 + h(s) = h(s)

OPEN: set of states generated but not expanded

 $\#\operatorname{CLOSED}$: set of expanded states

choose a node with the smallest f

procedure $\operatorname{Expand}(v)$ for A* algorithm

1 f	oreach $u \in \operatorname{Succ}(v)$ do	
2	if $u \notin \text{OPEN} \cup \text{CLOSED}$ then	# if <i>u</i> is a new state
3	Reserve memory for $g[u]$, $f[u]$, and Parent $[u]$	
4	$g[u] \leftarrow g[v] + c(v, u); \ f[u] \leftarrow g[u] + h(u)$	# memorize $f[u]$ as well as $g[u]$
5	$\operatorname{Parent}[u] \leftarrow v$	# also memorize Parent
6	$\text{Insert}_f(\text{OPEN}, u)$	
7	else if $u \in OPEN$ then	# "relax" edge (v, u) if $u \in OPEN$
8	if $g[v] + c(v, u) < g[u]$ then	# if path through (v, u) is shorter
9	$g[u] \leftarrow g[v] + c(v, u); \ f[u] \leftarrow g[u] + h(u)$	# update g and f
10	$Parent[u] \leftarrow v$	# update Parent, too
11	else $\#$ if $u \in CLO$	SED, "relax" edge (v, u) and re-open u if necessary
12	if $g[v] + c(v, u) < g[u]$ then	# if a cheaper path is found
13	$g[u] \leftarrow g[v] + c(v, u); \ f[u] \leftarrow g[u] + h(u)$	# update g and f
14	$\operatorname{Parent}[u] \leftarrow v$	# update Parent, too
15	$CLOSED \leftarrow CLOSED \setminus \{u\}$	# then take u out of $CLOSED$
16	$\operatorname{Insert}_f(\operatorname{OPEN}, u)$	# and put it back into OPEN

procedure $\operatorname{Expand}(v)$ for Dijkstra's algorithm

1	foreach $u \in \operatorname{Succ}(v)$ do	
2	if $u \notin OPEN \cup CLOSED$ then	# if <i>u</i> is a new state
3	Reserve memory for $g[u]$, Parent $[u]$	
4	$g[u] \leftarrow g[v] + c(v, u)$	# memorize $g[u]$
5	$\operatorname{Parent}[u] \leftarrow v$	# also memorize Parent
6	$\text{Insert}_g(\text{OPEN}, u)$	
7	else if $u \in OPEN$ then	# "relax" edge (v, u) if $u \in OPEN$
8	if $g[v] + c(v, u) < g[u]$ then	# if it is better than the current path
9	$g[u] \leftarrow g[v] + c(v, u)$	# update g if path through (v, u) is shorter
10	Parent[u] $\leftarrow v$	# update Parent, too

A* and Dijkstra's algorithm: Difference in Expand(v)

Case	Dijkstra	A*	41
$u \notin OPEN$ nor $u \notin CLOSED$	$\begin{array}{l} g[u] \leftarrow g[v] + c(v, u) \\ \text{Insert}_g(\text{OPEN}, u) \\ \text{Parent}[u] \leftarrow v \end{array}$	$g[u] \leftarrow g[v] + c(v, u)$ $f[u] \leftarrow g[u] + h(u)$ $Insert_f(OPEN, u)$ $Parent[u] \leftarrow v$	
$u \in \text{OPEN}$	if $g[v] + c(v, u) < g[u]$ then $g[u] \leftarrow g[v] + c(v, u)$ Parent $[u] \leftarrow v$	if $g[v] + c(v, u) < g[u]$ then $g[u] \leftarrow g[v] + c(v, u)$ $f[u] \leftarrow g[u] + h(u)$ Parent $[u] \leftarrow v$	
$u \in \text{CLOSED}$	Do nothing (always $g[u] \leq g[v] + c(v, u)$)	$\begin{split} & \text{if } g[v] + c(v, u) < g[u] \text{ then} \\ & g[u] \leftarrow g[v] + c(v, u) \\ & f[u] \leftarrow g[u] + h(u) \\ & \text{CLOSED} \leftarrow \text{CLOSED} \leftarrow \text{CLOSED} \setminus \{u\} \\ & \text{Insert}_f(\text{OPEN}, u) \\ & \text{Parent}[u] \leftarrow v \end{split}$	

v = node just expanded / u = a successor of v

Properties of A*

Assumptions

- At least one solution (path from the initial state to a goal state) exists
- function $h(\cdot)$ is admissible

Completeness

A* never fails to find a solution

Admissibility

The solution found by A* is optimal

Exercise

Trace the execution of the A* algorithm on this graph. In particular,

- **1** Trace which nodes are on OPEN and which are on CLOSED
- **2** Compute the *g*-value of each node at each stage
- In what order are nodes expanded?
- How many iterations are necessary before termination?

If you still have time left, trace the behavior of Dijkstra's algorithm (i.e., by setting h = 0 for all nodes) on the same graph

A* may reopen closed nodes

Cf. Dijkstra's algorithm never reopens a node.

Is there a class of heuristic functions h such that A* does not open a node more than once?

Monotone heuristic functions

Monotone heuristic function

Heuristic function *h* is said to be **monotone** if

- $h(v) \le c(v, u) + h(u)$ holds for **every** edge (v, u)
- h(t) = 0 for every goal node t

Monotonicity and admissibility

Monotonicity implies admissibility

h is monotone \rightarrow *h* is admissible

A* guided by monotone heuristic function h **never** re-opens a node

46

A* algorithm with monotone h

Main routine — No change from the original A* 1 OPEN \leftarrow **new** PriorityQueue_f # priority is based on f2 $g[s] \leftarrow 0$ $f[s] \leftarrow h(s)$ # f[s] = g[s] + h(s) = h(s)4 Insert_f(OPEN, s) # OPEN: set of states generated but not expanded 5 CLOSED $\leftarrow \emptyset$ # CLOSED: set of expanded states 6 loop do if IsEmpty(OPEN) then return "failure" 7 $v \leftarrow \text{DeleteMin}_f(\text{OPEN})$ # choose a node with the smallest f8 $CLOSED \leftarrow CLOSED \cup \{v\}$ 9 if IsGoal(v) then return Solution(v, s)10 $\operatorname{Expand}(v)$ 11

Procedure Expand(v)

for A* algorithm when h is monotone

1	foreach $u \in \operatorname{Succ}(v)$ do	
2	if $u \notin \text{OPEN} \cup \text{CLOSED}$ then	# if <i>u</i> is a new state
3	Reserve memory for $g[u]$, $f[u]$, and Parent $[u]$	
4	$g[u] \leftarrow g[v] + c(v, u); \ f[u] \leftarrow g[u] + h(u)$	# memorize $f[u]$ as well as $g[u]$
5	$\operatorname{Parent}[u] \leftarrow v$	# also memorize Parent
6	$\operatorname{Insert}_f(\operatorname{OPEN}, u)$	
7	else if $u \in OPEN$ then	# "relax" edge (v, u) if $u \in OPEN$
8	if $g[v] + c(v, u) < g[u]$ then	# if it gives a better path than the current one
9	$g[u] \leftarrow g[v] + c(v, u); \ f[u] \leftarrow g[u] + h(u)$	# update g and f
10	L Parthis test never succeeds in	f h is monotone # update Parent, too
11	else $\#$ if $u \in CL$	OSED, "relax" edge (v, u) and re-open u if necessary
12	if $g[v] + c(v, u) < g[u]$ then	# if a cheaper path is found
13	$g[u] \leftarrow g[v] + c(v, u); \ f[u] \leftarrow g[u] + h(u)$	# update g and f
14	$\operatorname{Parent}[u] \leftarrow v$	# update Parent
15	$CLOSED \leftarrow CLOSED \setminus \{u\}$	# take <i>u</i> out of CLOSED
16	$\operatorname{Insert}_f(\operatorname{OPEN}, u)$	# and put it back in OPEN

Thus, this part can be safely removed if we know *h* is monotone for sure

Dijkstra and A* with monotone *h***: Difference in** Expand(v)

Case	Dijkstra	A*	51
$u \notin \text{OPEN}$ nor $u \notin \text{CLOSED}$	$\begin{array}{l} g[u] \leftarrow g[v] + c(v, u) \\ \text{Insert}_g(\text{OPEN}, u) \\ \text{Parent}[u] \leftarrow v \end{array}$	$g[u] \leftarrow g[v] + c(v, u)$ $f[u] \leftarrow g[u] + h(u)$ Insert _f (OPEN, u) Parent[u] $\leftarrow v$	
$u \in OPEN$	if $g[v] + c(v, u) < g[u]$ then $g[u] \leftarrow g[v] + c(v, u)$ Parent $[u] \leftarrow v$	if $g[v] + c(v, u) < g[u]$ then $g[u] \leftarrow g[v] + c(v, u)$ $f[u] \leftarrow g[u] + h(u)$ Parent $[u] \leftarrow v$	
$u \in \text{CLOSED}$	Do nothing (always $g[u] \leq g[v] + c(v, u)$)	Do nothing (always $g[u] \leq g[v] + c(v, u)$)	

How difficult is it to design a monotone heuristic function?

Good News!

Almost all well-known "natural" heuristics (e.g., those computed from relaxed problems) are monotone

5

53

Note: the heuristic used for the exercise was artificially constructed

lt was

- ► admissible
- ► but **not** monotone