3010

ARTIFICIAL INTELLIGENCE

Lecture 3 A* search

Masashi Shimbo

2019-05-15

License: @® @ CC BY-SA 4.0 except where noted

Heuristicsearch

Today’s agenda

» Heuristic evaluation function

» The A* algorithm

Heuristic search: Motivation - .25 oz o

Even if we have some “knowledge” about a given problem, Dijkstra’s
algorithm doesn’t have a means to take advantage of it.

EZ5NIcHEICNT 2BASHOERRMAHFNH > TH, 1V ANTETIEERT DI ENTERHL

Here is a motivating example...

ez, ..

https://creativecommons.org/licenses/by-sa/4.0/

Even if you know the goal state is located at the lower right corner... Heuristic search

\ same g-value; Dijkstra’s

algorithm thinks these Search using domain- (problem-)specific knowledge, or heuristics
are equally promising

nodes

Also called “informed” search

But what kind of “knowledge”?

Dijkstra’s algorithm does not take this information into account

o . . initial state
Heuristic evaluation function /(v)
— N
It is assumed that the knowledge about the problem is given as a form of heuristic l
evaluation function /(v) {
Sometimes simply called a heuristic function, or heuristic l {
—
Vv
h(v) = estimated cost of the cheapest path from node v l
to a terminal node h(v): estimated path cost.”
B . ’/’
»;/
! h*(v): optimal path cost from v

goal state

Admissible heuristic e 2250 omx Admissible heuristics and the A* algorithm

An important class of heuristic function BRGE1—URT v 7B E A*
A heuristic function £ is said to be admissible

) Why admissible heuristics matter?

] BEE2—YRT 1y IEHMOBRIENEEH?
For every node v, i(v) never overestimates the actual cheapest cost #*(v) to reach a

goal fromv
I ... Because the A* algorithm (described later) is admissible (=
guaranteed to find a shortest path) if the used heuristic function &
h(v) < h*(v) forevery node v. is admissible.

AWadba—URT 1y 7BE I DERGZS A* [LER (RERBZHREY 2 I EHMRIESND)

)

h gives optimistic estimates of actual cost h*.

How do we build an admissible heuristic? Gridworld
“Relaxed problems” approach: T
@ Make an easier problem RP by removing constraints in the original ‘_I'ET_’
problem OP.)
B Find the optimal solution for RP v
B Use the cost of the solution as heuristic 4 for OP.

The optimal solution (with cost 4*) for OP is also a solution of RP (but
not necessarily optimal in RP; better solutions may exist)

h<h*

Gridworld

Many obstacles exist [E=1)h 2777

initial state l—g-rii

goal state

Gridworld: relaxed problem iz

Assume obstacles do not exist [E=H —117F7E LG W ERE
oo
initial state l—g-r

goal state

Gridworld

Many obstacles exist [E=1)H Z 777

=
I %

initial state

goal state

Gridworld: relaxed problem =

Assume obstacles do not exist [E=H —1I7FE LG W ERE

v\
initial state H

“Manhattan distance

goal state

Gridworld: Manhattan-distance heuristic

initial state

goal state

Gridworld: Manhattan-distance heuristic

initial state

> goal state

Gridworld: Manhattan-distance heuristic

initial state

goal state

Gridworld: Manhattan-distance heuristic

initial state

goal state

Gridworld: Manhattan-distance heuristic

initial state

goal state

A 4

Gridworld: Manhattan-distance heuristic

Computation is easy
v: arbitrary state

Let

(x,y) coordinates of state v
(x;,y:) coordinates of the goal state

Then,

h(v) = |x — x| + |y — v

Gridworld: Manhattan-distance heuristic

initial state

—

goal state

Admissible heuristic via relaxed problems:
Another example

Manhattan distance heuristic for (n* — 1)-puzzles:

Sum of the Manhattan distance from each tile to its goal position.

I

Relaxed problem: tiles can overlap with each other.

Eight-puzzle: Manhattan distance heuristic

13 R ‘—‘ ’
8 6 7 !
4 5 2 1 move 3 moves 0 moves
\ T
TT1) !
4 5 6 1 move 1 move 1 move
7 8
l—7 8—1 h — 12
3 moves 2 moves

Heuristic evaluation function /i: Summary

» hassociates a non-negative real number A(v) to each state v

> Ah(v) is an estimate of the actual cheapest cost #*(v) necessary to

reach a goal state from state v

» /1 must be efficiently computable
> his said to be admissible if 2(v) < h*(v) for every state v

» One way to construct an admissible # is to consider relaxed

problems

Requirement for heuristic functions:
They must be efficiently computable

No use if computing a heuristic function takes equal or more time and
space than actually searching the state space, no matter how accurate
its estimates are.

The A* algorithm

The A* algorithm

[Hart, Nilsson & Raphael 1968]

Idea

Use the of

» the path cost from the initial state to state v g[v]
> the from v to a goal state A(v)

to evaluate how “promising” it is to expand state v.

> g[v]: value may get updated if a better path from s to v is found
later

> h(v): once computed, the value will not change

> g[v]: upper-bound of the optimal cost g*(v) (from s to v)

» h(v): lower-bound of the optimal cost #*(v) (from v to goal 1)
provided that /(v) is admissible.

Evaluation function f|v] of A*

fIv] = glv] + h(v)

where

g[v] tentative minimum cost from the initial state to state v

h(v) estimated cost from state v to the nearest goal state

Idea:
fIv] smaller <+ v more promising

initial state
g*(v): optimal 2
path cost to v R |
l KA ,
7 g[v]: tentative
v 3/ ,,,,,,,,, . path cost
h(v): estimated
path cost R
5 { h*(v): optimal path cost
>l from v

goal state

A* subsumes Dijkstra’s shortest path algorithm as a
special case

A* reduces to Dijkstra’s algorithm if 2(v) = 0 for every node v.

Priority queue

Two functions for manipulating priority queue Py:

Insert (P, v)
Putitemvin Py

DeleteMin¢(Py)

Remove and return an item with the minimum f-value from Py.

Thus, the returned item v is the one with

v = argmin fu]
MGPf

before removal

The A* algorithm

The algorithm is identical to Dijkstra’s, except

» OPEN is a priority queue with priority function f[v] = g[v] + h(v)
(not g[v)).

» For each generated node v, f[v] is recorded along with g[v].

» Nodes in CLOSED can be re-opened.

How a node changes its status in A*

Closed nodes can be re-opened

Status Description

Unexplored
1 (when a parent node is expanded)
OPEN the node is generated but not expanded
+ (when the node itself is expanded)

CLOSED the node is generated and expanded

Dijkstra’s shortest path algorithm
Main routine
OPEN <« new PriorityQueue,
gls] 0
Insert,(OPEN, s)
CLOSED «+ 0
loop do
if IsSEmpty(OPEN) then return “failure”
v < DeleteMin,(OPEN)
CLOSED «+ CLOSED U {v}
if IsGoal(v) then return Solution(v, s)
Expand(v)

procedure EXp&Dd(V) for Dijkstra’s algorithm

foreach u € Succ(v) do
if « ¢ OPEN U CLOSED then
Reserve memory for g[u], Parent|u]
glul < gl +c(v.u)
Parent[u] < v
Insert,(OPEN, u)
elseif u € OPEN then
if g[v] + c(v,u) < g[u] then
olu] < gb] + cv, 1)
Parent|u] < v

The A* algorithm

Main routine
OPEN < new PriorityQueue,
gls] < 0; fls] < hls)
Insert,(OPEN, s)
CLOSED « 0

loop do
if sEmpty(OPEN) then return “failure”

v <= DeleteMin ,(OPEN)

CLOSED < CLOSED U {v}

if IsGoal(v) then return Solution(v, s)
Expand(v)

procedure EXp&Dd(V) for A* algorithm

foreach 1 € Succ(v) do
if u ¢ OPEN U CLOSED then
Reserve memory for g[u], /1|, and Parent|u]
glul < gl + c(vou); flul < glul + hiu)
Parent[u] < v
Insert;(OPEN, u)
elseif u € OPEN then
if g[v] + c(v,u) < g[u] then
glu] < gv] + c(v,u); flu| < glu] + hlu)
Parent[u] < v
else
if g[v] + c(v,u) < glu] then
glu] < glv] +c(v,u); flu] < glu] + h(u)
Parent[u] < v
CLOSED <« CLOSED\{u}
Insert ;(OPEN, u)

A* and Dijkstra’s algorithm: Difference in Expand(v) Properties of A*

Case Dijkstra A* A i
ssumptions
u ¢ OPEN 8lu] « glv] + c(v, u) 8lu] = g[v] + c(v, u) . _
nor Insert, (OPEN, u) » At least one solution (path from the initial state to a goal state)
u ¢ CLOSED Parent[u] + v Insert ,(OPEN, u) exists
Parent[u] < v . . oo

u € OPEN if g[v] + c(v,u) < g[u] then if g[v] + c(v,u) < g[u] then > function h() is admissible

8lu] « g + c(v. u) 8lu] « g[v] + c(v, u)

Parent|u] < v

Parent|u] « v Completeness

u € CLOSED Do nothing A* never fails to find a solution
(always g[u] < g[v] + c(v, u))
Admissibility
The solution found by A* is optimal

v = node just expanded / u = a successor of v

o Exercise
0 initial node g
1

Trace the execution of the A* algorithm on this graph. In particular,

10 9 Open node @ Trace which nodes are on OPEN and which are on CLOSED

\4A
/ B Compute the g-value of each node at each stage
3

B In what order are nodes expanded?

7N

1 Closed node @ How many iterations are necessary before termination?

\ 10 If you still have time left, trace the behavior of Dijkstra’s algorithm (i.e.,
Ellanded nlde by setting &2 = 0 for all nodes) on the same graph

0

goal node

Monotone heuristic function
Heuristic function # is said to be monotone if

A* may reopen closed nodes
Cf. Dijkstra’s algorithm never reopens a node. > h(v) < c(v,u) + h(u) holds for every edge (v, u)
» h(t) = 0 for every goal node ¢
Is there a class of heuristic functions 4 such that A* does not open a s L c(v,u)
.""-. \ u
0L)

node more than once?

Monotone heuristic functions
t A

goal node

Monotonicity and admissibility
A* guided by monotone heuristic function /4 never re-opens a node

Monotonicity implies admissibility

his monotone — his admissible

A* algorithm with monotone /1 PrOCEdure Expand(v)

Main routine — No change from the original A* for A* algorithm when /1 is monotone

OPEN < new PriorityQueue, foreach u € Succ(v) do
if u ¢ OPEN U CLOSED then

gls] <0 Reserve memory for g[u], f[u], and Parent|u]
fls] < h(s) 8lu] %[g%v} +c(vou); flu) < glu] + h(u)
. Parent[u] < v
Insert;(OPEN, s) Insert (OPEN, u)
CLOSED «+ 0 elseif ¢ OPEN then
loop do if g[v] + c(v,u) < g[u] then
if [sEmpty(OPEN) then return “failure” f;[”] gl + c(viu); flul + glul + h(u)
v < DeleteMin(OPEN) oo This test never succeeds if 4 is monotone
CLOSED «+ CLOSED U {v} if g[v] + c(v,u) < g[u] then
if IsGoal(v) then return Solution(v, s) ‘Ig;[”] ¢ 0]+ (v, u); flu] = glu] + h(u)
arent[u] < v
Expand(v) CLOSED < CLOSED\{u}
Insert ,(OPEN, u)
Thus, this part can be safely removed if we know & is monotone
for sure
Dijkstra and A* with monotone 1t Difference in Expand(v) How difficult is it to design a monotone heuristic
Case Dijkstra = function?
u ¢ OPEN glu] « gpv] + c(v,u) glu] « gpv] + c(v,u)
nor Insert,(OPEN,) flu] < glu] + h(u)
u ¢ CLOSED Parent[u] < v Insert ,(OPEN, u)
Parent|u] < v
u € OPEN if g[v] + c(v,u) < g[u] then if g[v] + c(v,u) < g[u] then Good News!
8lu] g + c(v, u) 8lu] gl + c(v, u)
12 [u] < g[u] " ” H H
arentlu] v é;’r'ent[;]'f_ e Almost all well-known “natural” heuristics (e.g., those computed from
4 € CLOSED Bonehing Banenng relaxed problems) are monotone
(always glu] < g[v] + c(v,u)) (always g[u] < g[v] + c(v,u))

v = node just expanded / u = a successor of v

initial node

D-

goal node

Note: the heuristic used for the
exercise was artificially
constructed

It was

» admissible
» but not monotone

	Top
	Agenda
	Heuristic evaluation function
	A*
	The A* algorithm
	Exercise

	Monotone heuristic function

