3010 Artificial Intelligence - Assignment 1
 Due: Tuesday, May 21, 2019

Write a report answering Questions 1-4 (Note: questions continue to the back of the page). Submit the report in the drop-in box in front of Information Science Administration Office, by no later than May 21.

Question 1

Consider the state space graph shown below. This graph has six nodes $\{s, t, w, x, y, z\}$, among which s is the initial node and t is the goal node. The digit next to each arc represents the cost of the arc. For instance, the cost of arc (x, z) is $c(x, z)=9$. Answer the following questions.

1. Find the cost of the cheapest path from each of the six nodes to the goal node t.
2. Suppose we run on this graph Dijkstra's shortest-path algorithm shown in Figure 1. In each iteration of lines 6-11 of function Dijkstra (in Figure 1),

- show which nodes are in OPEN and what are their g-values when line 7 is executed, and
- show which node is chosen as v on line 8 .

```
```

function Dijkstra(s)

```
```

function Dijkstra(s)
OPEN \leftarrow new PriorityQueue ${ }_{g}$
OPEN \leftarrow new PriorityQueue ${ }_{g}$
$g[s] \leftarrow 0$
$g[s] \leftarrow 0$
Insert $_{g}($ OPEN, $s)$
Insert $_{g}($ OPEN, $s)$
CLOSED $\leftarrow \emptyset$
CLOSED $\leftarrow \emptyset$
loop do
loop do
if IsEmpty (OPEN) then return "failure"
if IsEmpty (OPEN) then return "failure"
$v \leftarrow$ DeleteMin $_{g}($ OPEN $)$
$v \leftarrow$ DeleteMin $_{g}($ OPEN $)$
CLOSED \leftarrow CLOSED $\cup\{v\}$
CLOSED \leftarrow CLOSED $\cup\{v\}$
if $\operatorname{IsGoal}(v)$ then return Solution (v, s)
if $\operatorname{IsGoal}(v)$ then return Solution (v, s)
$\operatorname{Expand}(v)$

```
```

 \(\operatorname{Expand}(v)\)
    ```
```

```
procedure Expand(v)
    foreach }u\in\operatorname{Succ}(v)\mathrm{ do
        if }u\not\in\mathrm{ OPEN }\cup\mathrm{ CLOSED then
            Parent[u]}\leftarrow
            g[u]}\leftarrowg[v]+c(v,u
            Insert}\mp@subsup{}{g}{(OPEN,u)
        else if }u\in\mathrm{ OPEN then
            if g[v]+c(v,u)<g[u] then
                Parent[u]}\leftarrow
                    g[u]}\leftarrowg[v]+c(v,u
```

Figure 1: Dijkstra's shortest path algorithm. OPEN, CLOSED, Parent, and g are global variables. See the lecture slides for other details.

Question 2

Draw a state space graph G that satisfies all of the following conditions:

1. G has four nodes $\{s, t, x, y\}$, where s is the initial node and t is the (only) goal node;
2. G has six edges;
3. all edge costs are positive integers less than or equal to 6 ; and
4. when Dijkstra's shortest-path algorithm (of Figure 1) is run on G, the g value for one node is changed twice (i.e., line 10 of procedure Expand is executed twice).

Question 3

Let v_{j} be the j th node closed (i.e., placed in the CLOSED set) during a run of Dijkstra's algorithm, $j=1,2, \ldots$. (Because the first node closed by the algorithm is the initial node $s, v_{1}=s$). For any node v, let $g^{*}(v)$ denote the cost of the chepeast path from the initial node s to v. Prove that $g^{*}\left(v_{j}\right)$ is nondecreasing over j; that is, $g^{*}\left(v_{1}\right) \leq g^{*}\left(v_{2}\right) \leq g^{*}\left(v_{3}\right) \leq \cdots$.

Question 4

Consider a finite state space graph with (only) one goal node. Modify Dijkstra's algorithm so that when run on such a graph, it returns the number of cheapest paths from the initial node to the goal node, instead of a cheapest path to the node.
For example, in the following state space graph with the initial node s and the goal node t, the modified algorithm must return 4 , because there are four cheapest paths (all with cost 5), namely, (1) $s \rightarrow a \rightarrow$ $c \rightarrow d \rightarrow t$, (2) $s \rightarrow a \rightarrow c \rightarrow e \rightarrow t$, (3) $s \rightarrow b \rightarrow c \rightarrow d \rightarrow t$, and (4) $s \rightarrow b \rightarrow c \rightarrow e \rightarrow t$. Note: cheapest paths need not be enumerated; only their number (i.e., " 4 " in this example) must be output.

