3010 Artificial Intelligence — Assignment 1 Due: Tuesday, May 21, 2019

Write a report answering Questions 1–4 (Note: questions continue to the back of the page). Submit the report in the drop-in box in front of Information Science Administration Office, by no later than May 21.

Question 1

Consider the state space graph shown below. This graph has six nodes $\{s, t, w, x, y, z\}$, among which s is the initial node and t is the goal node. The digit next to each arc represents the cost of the arc. For instance, the cost of arc (x, z) is c(x, z) = 9. Answer the following questions.

- 1. Find the cost of the cheapest path from each of the six nodes to the goal node t.
- 2. Suppose we run on this graph Dijkstra's shortest-path algorithm shown in Figure 1. In each iteration of lines 6–11 of function Dijkstra (in Figure 1),
 - show which nodes are in OPEN and what are their g-values when line 7 is executed, and
 - show which node is chosen as v on line 8.

1 f	unction Dijkstra(s)	(massadume Francis d(a)
2	$OPEN \leftarrow new PriorityQueue_a$	1 procedure $Expand(v)$
	3	2 foreach $u \in \operatorname{Succ}(v)$ do
3	$g[s] \leftarrow 0$	3 if $u \notin OPEN \cup CLOSED$ then
4	$\text{Insert}_g(\text{OPEN}, s)$	4 $Parent[u] \leftarrow v$
5	$CLOSED \leftarrow \emptyset$	$[5 g[u] \leftarrow g[v] + c(v, u)$
6	loop do	6 Insert _{a} (OPEN, u)
7	if IsEmpty(OPEN) then return "failure"	7 else if $u \in OPEN$ then
8	$v \leftarrow \text{DeleteMin}_g(\text{OPEN})$	s if $g[v] + c(v, u) < g[u]$ then
9	$CLOSED \leftarrow CLOSED \cup \{v\}$	9 Parent $[u] \leftarrow v$
10	if $IsGoal(v)$ then return $Solution(v, s)$	
11	Expand(v)	$10 [] g[u] \leftarrow g[v] + c(v, u)$

Figure 1: Dijkstra's shortest path algorithm. OPEN, CLOSED, Parent, and g are global variables. See the lecture slides for other details.

Question 2

Draw a state space graph G that satisfies all of the following conditions:

- 1. G has four nodes $\{s, t, x, y\}$, where s is the initial node and t is the (only) goal node;
- 2. G has six edges;
- 3. all edge costs are positive integers less than or equal to 6; and
- 4. when Dijkstra's shortest-path algorithm (of Figure 1) is run on G, the g value for one node is changed twice (i.e., line 10 of procedure Expand is executed twice).

Question 3

Let v_j be the *j*th node closed (i.e., placed in the CLOSED set) during a run of Dijkstra's algorithm, j = 1, 2, ... (Because the first node closed by the algorithm is the initial node $s, v_1 = s$). For any node v, let $g^*(v)$ denote the cost of the chepeast path from the initial node s to v. Prove that $g^*(v_j)$ is nondecreasing over j; that is, $g^*(v_1) \le g^*(v_2) \le g^*(v_3) \le \cdots$.

Question 4

Consider a finite state space graph with (only) one goal node. Modify Dijkstra's algorithm so that when run on such a graph, it returns the *number* of cheapest paths from the initial node to the goal node, instead of a cheapest path to the node.

For example, in the following state space graph with the initial node s and the goal node t, the modified algorithm must return 4, because there are four cheapest paths (all with cost 5), namely, (1) $s \rightarrow a \rightarrow c \rightarrow d \rightarrow t$, (2) $s \rightarrow a \rightarrow c \rightarrow e \rightarrow t$, (3) $s \rightarrow b \rightarrow c \rightarrow d \rightarrow t$, and (4) $s \rightarrow b \rightarrow c \rightarrow e \rightarrow t$. Note: cheapest paths need not be enumerated; only their number (i.e., "4" in this example) must be output.

