
3010 Artificial Intelligence — Assignment 1
Due: Tuesday, May 21, 2019
Write a report answering Questions 1–4 (Note: questions continue to the back of the page). Submit the
report in the drop-in box in front of Information Science Administration Office, by no later than May 21.

Question 1
Consider the state space graph shown below. This graph has six nodes {s, t, w, x, y, z}, among which s
is the initial node and t is the goal node. The digit next to each arc represents the cost of the arc. For
instance, the cost of arc (x, z) is c(x, z) = 9. Answer the following questions.

sinitial node

x

y w

z t goal node

1

6

9

4
3

2

5

9

1. Find the cost of the cheapest path from each of the six nodes to the goal node t.

2. Suppose we run on this graph Dijkstra’s shortest-path algorithm shown in Figure 1. In each iteration
of lines 6–11 of function Dijkstra (in Figure 1),

• show which nodes are in OPEN and what are their g-values when line 7 is executed, and
• show which node is chosen as v on line 8.

1 function Dijkstra(s)
2 OPEN← new PriorityQueueg
3 g[s]← 0
4 Insertg(OPEN, s)
5 CLOSED← ∅
6 loop do
7 if IsEmpty(OPEN) then return “failure”
8 v ← DeleteMing(OPEN)
9 CLOSED← CLOSED ∪ {v}
10 if IsGoal(v) then return Solution(v, s)
11 Expand(v)

1 procedure Expand(v)
2 foreach u ∈ Succ(v) do
3 if u ̸∈ OPEN ∪ CLOSED then
4 Parent[u]← v
5 g[u]← g[v] + c(v, u)
6 Insertg(OPEN, u)

7 else if u ∈ OPEN then
8 if g[v] + c(v, u) < g[u] then
9 Parent[u]← v
10 g[u]← g[v] + c(v, u)

Figure 1: Dijkstra’s shortest path algorithm. OPEN, CLOSED, Parent, and g are global variables. See
the lecture slides for other details.

Answer
1. See the table below:

node s x y z w t

cheapest path cost to t 13 12 8 5 9 0

2. See the table below—g-values for closed nodes are crossed out.
Iteration OPEN nodes g[s] g[x] g[y] g[z] g[w] g[t] node chosen as v

1 s 0 s
2 x, y A0 1 6 x
3 y, z A0 A1 5 10 y
4 z, w A0 A1 A5 8 7 w
5 z, t A0 A1 A5 8 A7 16 z
6 t A0 A1 A5 A8 A7 13 t

1



Question 2
Draw a state space graph G that satisfies all of the following conditions:

1. G has four nodes {s, t, x, y}, where s is the initial node and t is the (only) goal node;

2. G has six edges;

3. all edge costs are positive integers less than or equal to 6; and

4. whenDijkstra’s shortest-path algorithm (of Figure 1) is run onG, the g value for one node is changed
twice (i.e., line 10 of procedure Expand is executed twice).

Answer
Many graphs are possible, but the following reasoning applies regarless. For a node to have its g-value
updated twice on line 10, it must have three incoming edges—relaxing one of them have the node gener-
ated, and relaxing the other two makes the node’s g-value updated. And the expansion of that node must
be preceded by the expansion of the three parent nodes of these edges. Since we have only four nodes,
that node with three incoming edges must be t. The following is one such graph.

sinitial node x y t goal node
1

3

6

1

4

2

The g-value of t changes from 6 to 5, and then finally to 4.

Question 3
Let vj be the jth node closed (i.e., placed in the CLOSED set) during a run of Dijkstra’s algorithm,
j = 1, 2, . . .. (Because the first node closed by the algorithm is the initial node s, v1 = s). For any
node v, let g∗(v) denote the cost of the chepeast path from the initial node s to v. Prove that g∗(vj) is
nondecreasing over j; that is, g∗(v1) ≤ g∗(v2) ≤ g∗(v3) ≤ · · · .

Answer
Proof (A) Assume g∗(v1) ≤ · · · ≤ g∗(vk−1). We prove g∗(vk−1) ≤ g∗(vk) also holds. First, note that
from the time when vj (j = 1, . . . , k) is closed, relation

g[vj ] = g∗(vj) for j = 1, 2, . . . , k. (1)

holds by the property of Dijkstra’s algorithm. Now, two cases are possible, depending on the value of
Parent[vk] when vk is closed:

• If Parent[vk] = vk−1, it means that vk−1 is the parent of a cheapest path to vk from s, and thus
g[vk] = g∗(vk) = g∗(vk−1) + c(vk−1, vk). Since all edge costs are greater than 0, it follows that
g∗(vk) > g∗(vk−1)

• If Parent[vk] ̸= vk−1, it means that when vk−1 was closed, vk must have been in OPEN with
g[vk] = g∗(vk) already. But since vk−1 is chosen as the node to close instead of vk, it follows
that g[vk−1] ≤ g[(vk]. And since g[vk−1] = g∗(vk−1) and g[(vk] = g∗(vk), we have g∗(vk−1) ≤
g∗((vk).

In either case, we have g∗(vk−1) ≤ g∗(vk).

2



Proof (B) (Proof by contradiction) Suppose on the contrary that Dijkstra’s algorithm closes a node v
before u despite

g∗(u) < g∗(v). (2)
Consider the time at which v is about to be closed. Let y be the first non-closed node along a cheapest
path p from s to u. Since y precedes u along p,

g∗(y) < g∗(u). (3)

Node y has a parent node along p, since y cannot be the initial node s (as it is closed in the first step of
Dijkstra’s algorithm). Let this parent node be x. The nodes along path p are depicted as follows:

CLOSED nodes

sinitial node x y u

Now, node y being the first non-closed node in p implies x is on CLOSED, which means

g[x] = g∗(x).

And when x was closed, edge (x, y) must have been relaxed. Hence

g[y] = g∗(x) + c(x, y) = g∗(y).

Now, node y must be on OPEN (because its parent x was expanded and y has not been closed). And the
algorithm is about to choose v over y as the node to close. Thus,

g∗(v) = g[v] ≤ g[y] = g∗(y).

Combining this with Equation (3), we have

g∗(v) < g∗(u),

which contradicts the assumption g∗(u) < g∗(v) given by Equation (2).

Question 4
Consider a finite state space graph with (only) one goal node. Modify Dijkstra’s algorithm so that when
run on such a graph, it returns the number of cheapest paths from the initial node to the goal node, instead
of a cheapest path to the node.
For example, in the following state space graph with the initial node s and the goal node t, the modified
algorithm must return 4, because there are four cheapest paths (all with cost 5), namely, (1) s → a →
c → d → t, (2) s → a → c → e → t, (3) s → b → c → d → t, and (4) s → b → c → e → t. Note:
cheapest paths need not be enumerated; only their number (i.e., “4” in this example) must be output.

s

a

b

c

d

e

t

2

2

4

1

1

1

1

3

1

1

Answer
Figure 2 shows a possible modification to Dijkstra’s algorithm, with changes marked by red lines. The
idea is to take advantage of the property of Dijkstra’s algorithm: For any node v and any cheapest path to
that node from s, all predecessors along the path are in CLOSED (with the correct g-value).

3



• Since we are not interested in a specific path in the graph, there is no need to maintain Parent[·].
(see Function Dijkstra in Figure 2, line 4)

• Instead, we maintain the number of cheapest paths to each node v in p[v]. (Function Dijkstra in
Figure 2, line 11)

• The main function is changed so that it returns the p[t] of the goal node t. (Function Dijkstra,
line 11)

• At the initial node s, we initialize by setting p[s] = 1. This is because there is a single cheapest
path from s to s, i.e., path with length 0, i.e., (s).

• When edge (v, u) is “relaxed” and a node u is generated, set p[u] ← p[v]. That is, the number of
cheapest paths to node u is exactly the same as that of its parent v. Their numbers are identical,
because for each cheapest path to v, it can be exteded by edge (v, u) to obtain the cheapest path to
u. (Procedure Expand, line 4)

• When a cheaper path is later found (through a new parent v), we need to reset p[u] to the number
of cheapest paths through the new parent; p[u]← p[v]. (Procedure Expand, line 9)

• When there is a path through a new parent giving the same cheapest path cost as we already have, the
number of the path through the new parent must be added to p[u]. (Procedure Expand, lines 11–12)

1 function Dijkstra(s)
2 OPEN← new PriorityQueueg
3 g[s]← 0
4 p[s]← 1
5 Insertg(OPEN, s)
6 CLOSED← ∅
7 loop do
8 if IsEmpty(OPEN) then return “failure”
9 v ← DeleteMing(OPEN)
10 CLOSED← CLOSED ∪ {v}
11 if IsGoal(v) then return p[v]
12 Expand(v)

1 procedure Expand(v)
2 foreach u ∈ Succ(v) do
3 if u ̸∈ OPEN ∪ CLOSED then
4 p[u]← p[v]
5 g[u]← g[v] + c(v, u)
6 Insertg(OPEN, u)

7 else if u ∈ OPEN then
8 if g[v] + c(v, u) < g[u] then
9 p[u]← p[v]
10 g[u]← g[v] + c(v, u)

11 else if g[v] + c(v, u) = g[u] then
12 p[u]← p[u] + p[v]

Figure 2: Modified Dijkstra’s algorithm to compute the number of shortest paths to the goal state.

Remark. Similar computation is utilized in Brandes’s algorithm for computing the “betweenness”’ cen-
trality of nodes in a graph; see Fouss, Saerens, Shimbo: “Algorithms and Models for Network Data and
Link Analysis”, Cambridge University Press, 2016, Chapter 4.

4


