3010

ARTIFICIAL INTELLIGENCE

Lecture 5 Online (Real-time) Heuristic Search
Masashi Shimbo

2019-05-21

License: @@®®@ CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/

Today’s agenda

» Offline vs. online (real-time) search

» The learning real-time A* (LRTA*) algorithm

The search algorithms introduced in this course thus far

Dijkstra, A*%, ...

fall into a paradigm called

offline search

Offline search paradigm

Objective = to find a complete plan (action sequence/path) that
achieves a goal

execution of the plan is not taken into account
No particular limit on time spent on making a plan

Finding a complete and optimal plan is the main research concern
—even though it might take quite a long time

Offline search paradigm

search
(make complete plan)

Y

execute the plan

Offline search paradigm
Dijkstra, A*, ...only deal with this part

search
(make complete plan)

Y

execute the plan

Offline search paradigm
Dijkstra, A*, ...only deal with this part

search
(make complete plan)

Y

execute the plan

Execution of the plan is out of their scope

Online search (aka real-time search)

Agent is required to be more “reactive”:

» Not enough time to make a complete plan

» Rather, decide an immediate action to take, on the basis of a
partial plan, and execute the action

» This process is repeated until a goal is reached

search and action execution are interleaved

Offline search

Offline search

search
(make a complete plan)

Online search

Y

Y

search
(make a partial plan)

execute the plan

Y

execute the plan

Offline vs. online search

Offline search Classic search framework
Dijkstra, A%, ...
Make an optimal, complete, plan to achieve a goal
Online search Learning real-time A* (LRTA*), ...
Determines an immediate action the agent should take,
execute the action, and repeat until a goal is reached.

Online search with one-step lookahead

Let us consider a simple, extreme scenario:

In the planning phase of each iteration, the agent has time just
enough for one-step lookahead but not more

the agent decides which edge to follow, after examining
successor nodes only
no further search (i.e., beyond successors) is allowed

As in A*, heuristic function 4 is available

Does the following simple strategy work?

» Consider the current node v of the agent as the initial node, and compute m
f(u) = c(v,u) + h(u) for every successor node u

» Choose the successor node with the minimum f-value as the destination

h-values

= 3<—KnEIES

Sk aam smallest —

73

This simple strategy doesn’t work!
...the agent might go back and forth forever

...then, what can be done?
The strategy used by Learning Real-Time A* (LRTA¥)

Update /& upon leaving the current node!

Let:

v = current node
Vnext = Node to move to
f(u)

—_—
Vnext = argmin ¢(v, u) + hlu]
ueSucc(v)

h-value of the current node v is updated by:
h[v] A f(vnext> = C(Va Vnext) + h[vnext]

before moving to the next node vpext

Succ(v)

l

move to the successor with the minimum f
(break ties arbitrarily)

Notice that A-values will change!
h-values are not static anymore, not as in A*

Initially, their values are given by a static, admissible heuristic
evaluation function 4 (as in A*), but the values may be updated upon
the agent’s leaving a state

Notation

h(v) (with round parentheses) denotes the initial heuristic value for
node v

hlv] (with square brackets) denotes the (possibly updated) heuristic
value for node v

= 3<—KnEIES

= 4<—K S

EXSam smallest

The agent can break the deadlock situation and move away!
fry

Learning real-time A* (LRTA¥*) [korf 1990]

procedure LRTA*(5s)
Input :initial state s
VS

while not [sGoal(v) do
if Succ(v) = () then stop

Joest <= +00; Vpest nil

foreach u € Succ(v) do
if 2[u] has not been computed then Afu] < h(u)

if c(v,u) + hlu] < foest then
Joest < c(v,u) + hlu]
Vpest < U

h[v] <~ f best
V <= Vpest

LRTA* is complete
If the state space graph is such that

» The numbers of nodes and edges are finite
> No self loops exist (note: this can be easily lifted)

» From any node, at least one path to a goal node exists, which implies
> h*(v) is finite for every node v
> Succ(v) # 0 for every non-goal node v

then LRTA* never fails to reach a goal

Proof is given in the following slides...

Terminology

“time j” = moment at the beginning of the (j + 1)st iteration

procedure LRTA*(s)
VS
while not IsGoal(v) do ;
i Suce(v) :(ﬁ)then stop time =0,1,2,..
Soest <= 4-00; Vpest < nil
foreach u € Succ(v) do
if 2[u] has not been computed then Z[u] < h(u)
if c(v,u) + hlu] < fpest then
Joest <= c(v, u) + hlu]
Vbest < U

h[v] < Jfoest
V < Vpest

Forj=0,1,2,...let

i (value of A[v] at time j), if h[v] has been computed
(y) =
’ (initial h-value h(v)), otherwise

= (the state v of the agent at time j)
Thus, for example,

ho(V)
hj(Vj- 1)
hj(v) =

=3
(initial heuristic value for node v)
= hj1(v;) +c(vj1,v))
hj_1(v) forallv # v,

Lemma: /i-values remain admissible if they are initially
admissible

If h-values are initially admissible, they remain admissible

h never overestimate the actual cost-to-goal /h*

hi(v) < h*(v) for every node v, and time j

Proof is by induction...

Base case (when j = 0):
ho(v) < h*(v) for every node v

because the initial heuristic evaluation function hy(v) is admissible by
assumption

Induction step:

Assume h;_;(v) < h*(v) for every node v, and show #;(v) < h*(v) for
every node v.

In the j-th iteration, the following happens:

» The agent moves from Vi-1 to Vj
> h[Vj_l] is updated from hj—l(vj—l) to hj(Vj—l)

Because v;_; is the only node whose h-value changes between times
j—1landj,

hj(v) < h*(v) for every node v other than v;_;

It remains to show A;(v;_1) < h*(v;_1)

Let u* be the successor of v;_; along an optimal path fromv,_;:

Vi—1

u* = argmin A" (u) + c(vj_1,u")

ueSuce(v;) / l \

In other words,

*

u
*) — h*(* . %
h (vj—l) h (I/t) + C(v]_l’u) () Succ(vj_l)
Now,
hij(vi.1) = min hj_q(u) 4+ c(vj_1,u) " update formula
MGSUCC(VI'71)
<hj_1(u) +c(vj_1,u*) " min < any successor u
< h*(u*) 4+ c(vj_1,u”) " inductive assumption

=h*(vj_1) " from (*) above

Consider the sum of the A-values over all nodes.

Between times j — 1 and j, h-values only change at node v,_;. Therefore,

sum after update sum before update h(vj—1) before update h(v;_1) after update

Do) = Y hia() = havi) A+ hi(vio)

Consider the sum of the A-values over all nodes.

Between times j — 1 and j, h-values only change at node v,_;. Therefore,

sum after update sum before update h(vj—1) before update h(v;_1) after update

—_— —_—
D) = Y ha) = i)+ hy(v)
veV vev
hj(vj—1)
= > hpa(v) = hpa(via) + hia(v) + e(vjo,vy)

veV

Consider the sum of the A-values over all nodes.

Between times j — 1 and j, h-values only change at node v,_;. Therefore,

sum after update sum before update h(vj—1) before update h(v;_1) after update

——— —— SN pdsiling
D) = Y ha) = i)+ hy(v)
veV veV
hj(vj-1)
:th 1 hj1(vio1) +hja(vj) +c(vi1,v;)
veV
hj—1(v))
—
- Zhl 1] I(VJ 1)+hj(vj) +C(Vj—1,Vj)

vev

Consider the sum of the A-values over all nodes.

Between times j — 1 and j, h-values only change at node v,_;. Therefore,

sum after update

Z hi(v) =

veV

sum before update

D hia)

vevV

:th .

veV

_th)

veV
Rearranging terms,

D hi(v) -

vevVv veV

)= b)

h(vj—1) before update h(v;_1) after update

—_— —_—
hio1(vi-1) + hi(vj-1)
hj(vj-1)

hj1(vio1) +hja(vj) +c(vi1,v;)

hj—1(v))
—

hj1(vi1) + hj(v;) +c(vji1,v))

hji1(vj1) +c(vio1,v))

Let Sj = ZVGV hj(V) — hj(Vj). Then,

D) = hi(vy) = Y hia(v) = hia(via) + (v, v))

veV veV

S Sj-1

§i=581+cvj-1,v))
Rearranging,

c(vji—1,v) =8; =8

Enumerate the equality over j = 1,2,...1:

C(VO,V1) =851—3S¢
C(Vl,v2) :SQ —Sl
C(VQ,Vg) :S3 _SQ

C(V‘r—la V‘r) - Sr - Sr—l

Taking sums on both sides of = yields

T

ZC(Vj_l,Vj) = ST — SO

=1

Notice that the left-hand side is the cost of the path the agent has traveled up to time
-

j=1

S S‘r SO Z 0

— Z he(v) = e (vs) .+ definition of S,
veV

<> he(v) " he(ve) >0
veV

< Z h*(v) = const whe(v) < h*(v)
veV

This relation holds forany 7 = 1, 2, ... during a run of the algorithm
“The distance (=path cost) that can be traveled is bounded.”
The algorithm will terminate.

LRTA* terminates if either (a) it reaches a goal, or (b) there is no successors to v

procedure LRTA*(s)
V<< S
while not [sGoal(v) do
if Succ(v) = () then stop
Joest < +00; Vpest < il
foreach u € Succ(v) do
if 2[u] has not been computed then Afu] < h(u)
if c(v,u) + hlu] < foest then
Joest < c(v,u) + hlu]
Vbest < U

h[v] A f best
V < Vpest

By assumption, there is always a node to move to

The only case the algorithm terminates is when it reaches a goal
The algorithm is complete

But the traversed path is in general not optimal

— Is there a way to obtain an optimal path?

Repeated application

Call LRTA*(s) repeatedly — after the agent reaches a goal, put it back to the initial
state s, and run LRTA* again.

Do not reset i between runs — reuse the updated A-values at the end of a
run as the inital #-values of the next run.

procedure Repeated LRTA*(s)
Input :initial state s
loop do

LRTA*(s)

Convergence (Learning)

We can show that after a certain run, the agent only traverses the
shortest path

The agent can learn the optimal behavior through repeated trials

The following slides give you a proof...

Notation

7(i) = number of iterations (moves) the agent performed in the ith
run

c) = cost of the path traversed by the agent in the ith run

K](.l) = sum of the h-values over all states at time j during the ith
run (0 < j < 7(i))

Note: K% = Kéiﬂ) because h-values are reused for the initial #-values

of the next run

()
) = Z c(vﬁ.’ll,vil))
=

S+(i) inthe ith run S inthe ith run

= [Kygy = HO0)] = (K = nO())]
—_— ~——
0 vr(;) is a goal state §
) (i) i
=K, — Ky + A9 ()
(i) (i) | g
S K‘r(i) - K() + h (S)
Rearranging /*(s) to the left-hand side:
) —h*(s) < KY) — Ky
_ g+ (i)
— o — K

~.- completeness proof

B9 (s) < B (s)

* h-values are reused between runs

Enumerate this inequality overrunsi = 1,2, ...
¢ —p*(s) < kP — kY
¢ —h*(s) < Ké?’) — K(()2)
<
™ _pr(s) < K(()n+1) Kén)

El Because ¢ — h*(s) > 0, the series on the left-hand side is the sum of
non-negative numbers

Bl This series is bounded by the constant on the right-hand side, and therefore the
sequence c) — 1*(s) must converge to 0

After some run, ¢l = h*(s)

The agent evertally traverses the shortest paths only

Agent has learned the optimal behavior through trial and error

It can also be proven that, eventually, 2(v) = h*(v) along the shortest paths.

Note: Relation to Q-learning

The updatable h-values can be regarded as an analogue of the
“0O-values” in O-learning (also used by Google’s AlphaGo), a form of

reinforcement learning
For detail, see:

A. G. Barto, S. J. Bradtke, S. P. Singh

Learning to act using real-time dynamic programming Artificial Intelligence,
72(1-2): 81-138

	Top
	What is real-time search?
	Illustration
	LRTA*
	Completeness
	Convergence

