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Today’s agenda

▶ Offline vs. online (real-time) search

▶ The learning real-time A* (LRTA*) algorithm
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The search algorithms introduced in this course thus far

Dijkstra, A*, …

fall into a paradigm called

offline search
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Offline search paradigm

Objective= to find a complete plan (action sequence/path) that
achieves a goal

å execution of the plan is not taken into account

No particular limit on time spent on making a plan

å Finding a complete and optimal plan is the main research concern
—even though it might take quite a long time
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Offline search paradigm

search
(make complete plan)

execute the plan
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Offline search paradigm

search
(make complete plan)

execute the plan

Dijkstra, A*, …only deal with this part
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Offline search paradigm

search
(make complete plan)

execute the plan

Dijkstra, A*, …only deal with this part

Execution of the plan is out of their scope
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Online search (aka real-time search)

Agent is required to be more “reactive”:

▶ Not enough time to make a complete plan
▶ Rather, decide an immediate action to take, on the basis of a

partial plan, and execute the action
▶ This process is repeated until a goal is reached

å search and action execution are interleaved
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Offline search

search
(make a complete plan)

execute the plan
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Offline search

search
(make a complete plan)

execute the plan

Online search

search
(make a partial plan)

execute the plan
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Offline vs. online search

Offline search Classic search framework
Dijkstra, A*, …
Make an optimal, complete, plan to achieve a goal

Online search Learning real-time A* (LRTA*), …
Determines an immediate action the agent should take,
execute the action, and repeat until a goal is reached.
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Online search with one-step lookahead

Let us consider a simple, extreme scenario:
In the planning phase of each iteration, the agent has time just
enough for one-step lookahead but not more

å the agent decides which edge to follow, after examining
successor nodes only

å no further search (i.e., beyond successors) is allowed

As in A*, heuristic function h is available
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Does the following simple strategy work?
▶ Consider the current node v of the agent as the initial node, and compute

f (u) = c(v, u) + h(u) for every successor node u

▶ Choose the successor node with the minimum f -value as the destination

compute the f -values of successor nodes

move to the successor with minimum f -value
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This simple strategy doesn’t work!
…the agent might go back and forth forever
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…then, what can be done?
The strategy used by Learning Real-Time A* (LRTA*)

Update h upon leaving the current node!

Let:

v = current node
vnext = node to move to

vnext = argmin
u∈Succ(v)

f (u)︷          ︸︸          ︷
c(v, u) + h[u] Succ(v)

v

u1 u2 u3

h-value of the current node v is updated by:

h[v]← f (vnext) = c(v, vnext) + h[vnext]

before moving to the next node vnext



22
compute the f -values of successor nodes

update the h-value of the current node by
the minimum f -value among the successors

move to the successor with the minimum f
(break ties arbitrarily)
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Notice that h-values will change!

å h-values are not static anymore, not as in A*

Initially, their values are given by a static, admissible heuristic
evaluation function h (as in A*), but the values may be updated upon
the agent’s leaving a state

Notation

h(v) (with round parentheses) denotes the initial heuristic value for
node v

h[v] (with square brackets) denotes the (possibly updated) heuristic
value for node v
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The agent can break the deadlock situation and move away!



36

Learning real-time A* (LRTA*) [Korf 1990]

1 procedure LRTA*(s)
Input : initial state s

2 v← s # v: current state

3 while not IsGoal(v) do
4 if Succ(v) = ∅ then stop # no successor—search fails

5 fbest ← +∞; vbest ← nil
6 foreach u ∈ Succ(v) do # find the successor with cheapest c(v, u) + h(u)

7 if h[u] has not been computed then h[u]← h(u)
8 if c(v, u) + h[u] < fbest then
9 fbest ← c(v, u) + h[u]

10 vbest ← u

11 h[v]← fbest # update; h[v]← argminu∈Succ(v) c(v, u) + h[u]

12 v← vbest # move; v← minu∈Succ(v) c(v, u) + h[u]
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LRTA* is complete
If the state space graph is such that

▶ The numbers of nodes and edges are finite

▶ No self loops exist (note: this can be easily lifted)

▶ From any node, at least one path to a goal node exists, which implies

▶ h∗(v) is finite for every node v
▶ Succ(v) , ∅ for every non-goal node v

then LRTA* never fails to reach a goal

Proof is given in the following slides…



38

Terminology

“time j” = moment at the beginning of the ( j + 1)st iteration

1 procedure LRTA*(s)
2 v← s
3 while not IsGoal(v) do
4 if Succ(v) = ∅ then stop
5 fbest ← +∞; vbest ← nil
6 foreach u ∈ Succ(v) do
7 if h[u] has not been computed then h[u]← h(u)
8 if c(v, u) + h[u] < fbest then
9 fbest ← c(v, u) + h[u]

10 vbest ← u

11 h[v]← fbest
12 v← vbest

time = 0, 1, 2, . . .
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For j = 0, 1, 2, . . ., let

h j(v) =

(value of h[v] at time j), if h[v] has been computed
(initial h-value h(v)), otherwise

v j = (the state v of the agent at time j)

Thus, for example,

v0 = s
h0(v) = (initial heuristic value for node v)

h j(v j−1) = h j−1(v j) + c(v j−1, v j)

h j(v) = h j−1(v) for all v , v j−1
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Lemma: h-values remain admissible if they are initially
admissible

If h-values are initially admissible, they remain admissible

å h never overestimate the actual cost-to-goal h∗

h j(v) ≤ h∗(v) for every node v, and time j

Proof is by induction…



41Base case (when j = 0):

h0(v) ≤ h∗(v) for every node v

because the initial heuristic evaluation function h0(v) is admissible by
assumption

Induction step:

Assume h j−1(v) ≤ h∗(v) for every node v, and show h j(v) ≤ h∗(v) for
every node v.



42In the j-th iteration, the following happens:

▶ The agent moves from v j−1 to v j

▶ h[v j−1] is updated from h j−1(v j−1) to h j(v j−1)

Because v j−1 is the only node whose h-value changes between times
j− 1 and j,

h j(v) ≤ h∗(v) for every node v other than v j−1

It remains to show h j(v j−1) ≤ h∗(v j−1)
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Let u∗ be the successor of v j−1 along an optimal path from v j−1:

u∗ = argmin
u∈Succ(v j)

h∗(u) + c(v j−1, u∗)

In other words,

h∗(v j−1) = h∗(u∗) + c(v j−1, u) (*) Succ(v j−1)

v j−1

u∗

Now,

h j(v j−1) = min
u∈Succ(v j−1)

h j−1(u) + c(v j−1, u) ∵ update formula

≤ h j−1(u∗) + c(v j−1, u∗) ∵ min≤ any successor u
≤ h∗(u∗) + c(v j−1, u∗) ∵ inductive assumption
= h∗(v j−1) ∵ from (*) above
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Consider the sum of the h-values over all nodes.

Between times j− 1 and j, h-values only change at node v j−1. Therefore,

sum after update︷    ︸︸    ︷∑
v∈V

h j(v) =

sum before update︷       ︸︸       ︷∑
v∈V

h j−1(v) −
h(v j−1) before update︷      ︸︸      ︷

h j−1(v j−1) +

h(v j−1) after update︷   ︸︸   ︷
h j(v j−1)

=
∑
v∈V

h j−1(v)− h j−1(v j−1) +

h j(v j−1)︷                     ︸︸                     ︷
h j−1(v j) + c(v j−1, v j)

=
∑
v∈V

h j−1(v)− h j−1(v j−1) +

h j−1(v j)︷︸︸︷
h j(v j) + c(v j−1, v j)

Rearranging terms,∑
v∈V

h j(v)− h j(v j) =
∑
v∈V

h j−1(v)− h j−1(v j−1) + c(v j−1, v j)
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48Let S j =
∑

v∈V h j(v)− h j(v j). Then,∑
v∈V

h j(v)− h j(v j)︸                ︷︷                ︸
S j

=
∑
v∈V

h j−1(v)− h j−1(v j−1)︸                          ︷︷                          ︸
S j−1

+ c(v j−1, v j)

S j = S j−1 + c(v j−1, v j)

Rearranging,

c(v j−1, v j) = S j − S j−1
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Enumerate the equality over j = 1, 2, . . . τ:

c(v0, v1) = S 1 − S 0

c(v1, v2) = S 2 − S 1

c(v2, v3) = S 3 − S 2

...
...

c(vτ−1, vτ) = S τ − S τ−1

Taking sums on both sides of= yields

τ∑
j=1

c(v j−1, v j) = S τ − S 0

Notice that the left-hand side is the cost of the path the agent has traveled up to time
τ



50τ∑
j=1

c(v j−1, v j) = S τ − S 0

≤ S τ ∵ S 0 ≥ 0

=
∑
v∈V

hτ(v)− hτ(vτ) ∵ definition of S τ

≤
∑
v∈V

hτ(v) ∵ hτ(vτ) ≥ 0

≤
∑
v∈V

h∗(v) = const ∵ hτ(v) ≤ h∗(v)

This relation holds for any τ = 1, 2, . . . during a run of the algorithm
å “The distance (=path cost) that can be traveled is bounded.”
å The algorithm will terminate.
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LRTA* terminates if either (a) it reaches a goal, or (b) there is no successors to v

1 procedure LRTA*(s)
2 v← s
3 while not IsGoal(v) do
4 if Succ(v) = ∅ then stop
5 fbest ← +∞; vbest ← nil
6 foreach u ∈ Succ(v) do
7 if h[u] has not been computed then h[u]← h(u)
8 if c(v, u) + h[u] < fbest then
9 fbest ← c(v, u) + h[u]

10 vbest ← u

11 h[v]← fbest
12 v← vbest



52By assumption, there is always a node to move to

å The only case the algorithm terminates is when it reaches a goal
å The algorithm is complete

But the traversed path is in general not optimal

— Is there a way to obtain an optimal path?
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Repeated application

Call LRTA*(s) repeatedly — after the agent reaches a goal, put it back to the initial
state s, and run LRTA* again.

Warning! Do not reset h between runs — reuse the updated h-values at the end of a
run as the inital h-values of the next run.

1 procedureRepeatedLRTA*(s)
Input : initial state s

2 loop do
3 LRTA*(s)
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Convergence (Learning)

We can show that after a certain run, the agent only traverses the
shortest path

å The agent can learn the optimal behavior through repeated trials

The following slides give you a proof…
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Notation

τ(i) = number of iterations (moves) the agent performed in the ith
run

c(i) = cost of the path traversed by the agent in the ith run

K(i)
j = sum of the h-values over all states at time j during the ith

run (0 ≤ j ≤ τ(i))

Note: K(i)
τ(i) = K(i+1)

0 because h-values are reused for the initial h-values
of the next run



56c(i) =
τ(i)∑
j=1

c(v(i)j−1, v
(i)
j )

=

S τ(i) in the ith run︷                ︸︸                ︷
[K(i)
τ(i) − h(i)(v(i)

τ(i))︸    ︷︷    ︸
0∵ vτ(i) is a goal state

]−

S 0 in the ith run︷                  ︸︸                  ︷
[K(i)

0 − h(i)( v(i)0︸︷︷︸
s

)] ∵ completeness proof

= K(i)
τ(i) − K(i)

0 + h(i)(s)

≤ K(i)
τ(i) − K(i)

0 + h∗(s) ∵ h(i)(s) ≤ h∗(s)

Rearranging h∗(s) to the left-hand side:

c(i) − h∗(s) ≤ K(i)
τ(i) − K(i)

0

= K(i+1)
0 − K(i)

0 ∵ h-values are reused between runs
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Enumerate this inequality over runs i = 1, 2, . . . , n:

c(1) − h∗(s) ≤ K(2)
0 − K(1)

0

c(2) − h∗(s) ≤ K(3)
0 − K(2)

0

... ≤ ...

c(n) − h∗(s) ≤ K(n+1)
0 − K(n)

0

Taking the sums on both sides yields:

n∑
i=1

(
c(i) − h∗(s)

)
≤ K(n+1)

0 − K(1)
0

≤ K(n+1)
0 =

∑
v∈V

h(n+1)
0 (v)

≤
∑
v∈V

h∗(v) = const



581 Because c(i) − h∗(s) ≥ 0, the series on the left-hand side is the sum of
non-negative numbers

2 This series is bounded by the constant on the right-hand side, and therefore the
sequence c(i) − h∗(s)must converge to 0

å After some run, c(i) = h∗(s)

å The agent evertally traverses the shortest paths only

å Agent has learned the optimal behavior through trial and error

å It can also be proven that, eventually, h(v) = h∗(v) along the shortest paths.
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Note: Relation to Q-learning

The updatable h-values can be regarded as an analogue of the
“Q-values” in Q-learning (also used by Google’s AlphaGo), a form of
reinforcement learning

For detail, see:
A. G. Barto, S. J. Bradtke, S. P. Singh
Learning to act using real-time dynamic programming Artificial Intelligence,
72(1–2): 81–138
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