
3010

ARTIFICIAL INTELLIGENCE
Lecture 5 A Brief Introduction to Reinforcement Learning

Masashi Shimbo

2019-05-23

License: cba CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/

2

Today’s Agenda

Introduction

Review: LRTA*

Markov decision problem

Real-time dynamic programming

Q-learning

Function approximation

Summary

3

Outline

▶ Review of the online search algorithm LRTA* and its relation to
asynchronous dynamic programming

▶ Extending LRTA* to stochastic state space leads to Real-Time
Dynamic Programming, a model-based reinforcement
learning method

▶ Q-learning, a popular model-free reinforcement learning
method, is introduced

▶ By “model-free”, we mean the transition probability and
incurred costs are not known—these have to be found by
actually exploring the state space (i.e., trying out many
different actions in different states)

4

Three types of machine learning tasks

▶ Supervised learning
▶ Unsupervised learning
▶ Reinforcement learning

5

Supervisedmachine learning 教師付き機械学習

▶ Given a set of input-output pairs, find the relationship
between input and output

▶ Typically, each input is assumed independent

å Previous decisions made by an agent do not affect future
input/output

▶ Sometimes not realistic—obtaining input-output pairs can be
expensive

6

Unsupervisedmachine learning 教師なし機械学習

No supervision is provided; just a bunch of input objects are given

Find common patterns, or group them according to some similarity
measure between objects

Examples:

Frequent pattern mining, clustering, etc.

7

Reinforcement learning 強化学習

▶ No explicit supervision (i.e., input-output pairs) is provided
▶ but “reward”/“cost” is provided as actions are taken
▶ An agent’s decision may affect not only immediate but also

future outcome
▶ The agent’s goal is to maximize the expected total future

reward/minimize the expected total future cost
—not the immediate reward/cost

▶ Weaker form of supervision than supervised learning (strong
explicit supervision), but stronger than unsupervised learning
(no supervision at all)

8

Reward/cost 報酬/コスト

Also called reinforcement signal

1 a number (a real value)
2 can be negative;
▶ negative reward is often called penalty or cost

3 A concept borrowed from behavioral psychology 行動主義心理学
“Animals try to behave in a way that the reward they receive is
maximized”
▶ positive reward works for reinforcing the agent’s

tendency to take the actions that have led to its reception
▶ negative reward (penalty) works for discourage the action

9

Reward/cost 報酬/コスト

Also called reinforcement signal

1 a number (a real value)
2 can be negative;
▶ negative reward is often called penalty or cost

3 A concept borrowed from behavioral psychology 行動主義心理学
“Animals try to behave in a way that the reward they receive is
maximized”
▶ positive reward works for reinforcing the agent’s

tendency to take the actions that have led to its reception
▶ negative reward (penalty) works for discourage the action

10

Online search

The agent is not taught precisely which action to take at each time
step, but instead a cost is incurred on taking an action

å Online search (like LRTA*) can be thought of as a very simple
form of reinforcement learning

11

Today’s Agenda

Introduction

Review: LRTA*

Markov decision problem

Real-time dynamic programming

Q-learning

Function approximation

Summary

12

LRTA*

v: current state of the agent

Repeat Steps 1 and 2 until v is a goal state:

1. Look-ahead and update

h[v]← min
v′∈Succ(v)

c(v, v′) + h[v′]

2. Action executionMove to a successor state that gives the
minimum in the formula above

v← argmin
v′∈Succ(v)

c(v, v′) + h[v′]

13

LRTA*: Repeated application
After the agent reaches a goal state, put it back to the initial state
and repeat

Then, after running LRTA* for a sufficiently long time,

▶ h-values converge to the actual cost-to-go h∗:
For every node v along the shortest path,

h[v] = h∗(v)

▶ All the moves made by the agent are “optimal”:
The agent eventually learns to move to successor v′ along the
optimal path, i.e.,

v′ = argmin
v′∈Succ(v)

c(v, v′) + h∗(v′)

(We say the agent has learned an optimal policy)

14

LRTA*’s update formula: Where does it come from?

Update formula of LRTA*:

h[v]← min
v′∈Succ(v)

c(v, v′) + h[v′]

Bellman’s equation for the shortest-path problem:

h∗(v) = min
v′∈Succ(v)

c(v, v′) + h∗(v′)

Notice the similarity

15

Asynchronous dynamic programming

h[v]← min
v′∈Succ(v)

c(v, v′) + h[v′] (update formula of LRTA*)

If this update formula is applied to every state v ∈ V (not just the current
state chosen at each iteration of the LRTA*) infinitely often, then h will
converge to h∗; i.e.,

h[v] = h∗(v) for all v ∈ V

after update is carried out a sufficiently large number of times on all states

▶ Of course, the number of states is often enormous, and updating all
states infinitely often is impractical

▶ LRTA* combines “greedy” control (decision making/move) and value
update so that it only updates the portion of the state space but still
learns the optimal policy

16

Today’s Agenda

Introduction

Review: LRTA*

Markov decision problem

Real-time dynamic programming

Q-learning

Function approximation

Summary

17

Stochastic state space 確率的な状態空間
Transition is not deterministic

Outcome of taking an action is not always the same
å An action cannot be identified with an edge anymore

deterministic state space

v0

v1 v2

a1 a2

P(v1 | v0, a1) = 1.0

P(v2 | v0, a1) = 0.0

P(v1 | v0, a2) = 0.0

P(v2 | v0, a2) = 1.0

stochastic state space

v0

v1 v2

P(v1 | v0, a1) = 0.8

P(v2 | v0, a1) = 0.2

P(v1 | v0, a2) = 0.5

P(v2 | v0, a2) = 0.5

18

Stochastic state space 確率的な状態空間

▶ For each state v ∈ V , a set of admissible actions A(v) is
available

▶ Taking an action a ∈ A(v) leads to a state v′ ∈ Succ(v)with
probability P(v′ | v, a)

Note:
∑

v′∈Succ(v) P(v′ | v, a) = 1

▶ Taking an “action” a in state v incurs a cost c(v, a)

This is a form of Markov decision problem—transition only
depends on the current state, but not states visited earlier

19

Objective of agent in stochastic state space

▶ LRTA* finds an optimal policy in the deterministic state space

å Optimal policy = decision rules that takes shortest route
to the goal

▶ We want to design an agent architecture that achieves a
similar objective in the stochastic state space

å What is an “optimal” policy in the stochastic space?
i.e., Taking an action does not always result in the desired
destination state

å “shortest path” does not make sense in stochastic space

20

Agent’s objective

A “good” policy is the one that incurs small expected total future
cost

å Objective of an agent is to find an optimal policy, which is a
policy that minimizes the expected total future cost

21

Policy

A policy is a function from states to actions

π : V → A

A policy determines which action should be taken at each state

22

Total future cost

Suppose we followed a policy π, and observed a state sequence
v0, v1, v2 . . . (an episode)

The total cost incurred in this episode is:

c(v0, π(v0)) + γc(v1, π(v1)) + γ2c(v2, π(v2)) + · · ·

=
∞∑

t=0

γtc(vt, π(vt))

▶ vt: state of the agent at time t
▶ c(v, a): cost incurred by taking action a at state v
▶ γ: problem-specific discount factor 0 < γ ≤ 1 (set to γ < 1 to

ensure the summation always converges)

23

Expected total future cost and optimal policy

Expectation of total future cost starting from state v satisfies the
following formula

Uπ(v) = c(v, π(v)) + γ
∑

v′∈Succ(v)

P(v′ | v, π(v))Uπ(v′)

Optimal expected total future cost U∗(v) is

U∗(v) = min
π

Uπ(v)

= min
π

c(v, π(v)) + γ ∑
v′∈Succ(v)

P(v′ | v, π(v))Uπ(v′)


A policy π∗ that satisfies Uπ

∗
(v) = U∗(v) is called an optimal policy

24It can be shown that:

▶ Minimum total future cost U∗ satisfies

U∗(v) = min
a∈A(v)

c(v, a) + γ ∑
v′∈Succ(v)

P(v′ | v, a)U∗(v′)


(This is also called Bellman’s optimality equation)

▶ Optimal policy π∗ is the one that satisfies

π∗(v) = argmin
a∈A(v)

c(v, a) + γ ∑
v′∈Succ(v)

P(v′ | v, a)U∗(v′)



25

Bellman’s equation in stochastic state space
when transition probability is known

U∗(v) = min
a∈A(v)

c(v, a) + γ ∑
v′∈Succ(v)

P(v′ | v, a)U∗(v′)


Update formula for dynamic programming:

U∗(v) can be found by (asynchronous) dynamic programming:

U[v]← min
a∈A(v)

c(v, a) + γ ∑
v′∈Succ(v)

P(v′ | v, a)U[v′]


if initially U[t] = 0 for all goal states t ∈ V

26

Today’s Agenda

Introduction

Review: LRTA*

Markov decision problem

Real-time dynamic programming

Q-learning

Function approximation

Summary

27

Real-time DP [Barto, Bradtke, Singh, 1995]
Interleaves planning and execution, like LRTA*

Update step (only for the current state v):

U[v]← min
a∈A(v)

c(v, a) + γ ∑
v′∈Succ(v)

P(v′ | v, a)U[v′]


Act greedily according to the current U

Execute action a′ that gives the minimum above:

a′ = argmin
a∈A(v)

c(v, a) + γ ∑
v′∈Succ(v)

P(v′ | v, a)U[v′]


If multiple actions give the minimum, choose among them randomly

28

Real-time DP: Property

Real-time DP will find optimal policy on the relevant states, if the
following conditions are met:

▶ agent is reset to the initial state once it reaches a goal state
▶ U[t] = 0 for every goal state t
▶ All cost c(v, a) > 0 for every state v and action a ∈ A(v)
▶ U[v] is initially non-overestimating for all state v; i.e., initially

U[v] ≤ U∗(v) for all states v

29

Today’s Agenda

Introduction

Review: LRTA*

Markov decision problem

Real-time dynamic programming

Q-learning

Function approximation

Summary

30

Model-free reinforcement learning

What if P(v′ | v, a) or c(v, a) is not known? Can’t we find optimal
policy in this case?

It is possible, through trial and error (i.e., by actually trying every
action in every state)

—but this makes it not easy to design an architecture like RTDP or
LRTA* (i.e., that uses greedy action selection)

31

Model-free reinforcement learning

▶ One simple way is to first estimate the transition probability
P(v′ | v, a), by actually trying every action a at every state v a
sufficient number of times, observing how frequently the
transition to each state v′ occurs
Then use these probability estimates with the value iteration
procedure or real-time DP

▶ Another way is to directly estimate the Q-valueswhen trying
out every action at every state
— (Temporal difference) Q-learning

32

Q-values
Define Q-value for state-action pair (v, a) as:

Q∗(v, a) = c(v, a) + γ
∑

v′∈Succ(v)

P(v′ | v, a)U∗(v′) (*)

Plug (*) this into Bellman’s equation:

U∗(v) = min
a∈A(v)

c(v, a) + γ ∑
v′∈Succ(v)

P(v′ | v, a)U∗(v′)


= min

a∈A(v)
Q∗(v, a) (**)

Plugging (**) back to (*) yields:

Q∗(v, a) = c(v, a) + γ
∑

v′∈Succ(v)

P(v′ | v, a)
U∗(v′)︷ ︸︸ ︷

min
a′∈A(v′)

Q∗(v′, a′)

33

Q-values

Thus, optimal Q-values must satisfy

Q∗(v, a) = c(v, a) + γ
∑

v′∈Succ(v)

P(v′ | v, a)
U∗(v′)︷ ︸︸ ︷

min
a′∈A(v′)

Q∗(v′, a′)

Again, we turn this into an update formula:

Q[v, a]← c(v, a) + γ
∑

v′∈Succ(v)

P(v′ | v, a) min
a′∈A(v′)

Q[v′, a′]

We still have P(v′ | v, a) in the formula, but Q[v, a] can be estimated
by the method of temporal differencewithout estimating
P(v′ | v, a)

34

TD Q-Learning

Whenever an action a is executed in state v leading to state v′ and
receiving cost c, update Q[v, a] by

Q[v, a]← Q[v, a] + β(n(v, a))
(
c + γ min

a′∈A(v′)
Q[v′, a′]− Q[v, a]

)
where

▶ β(n): learning rate function; 0 < β(n) ≤ 1 for all n ≥ 0

▶ n(v, a): number of times action a was executed in state v so far

35

Convergence of Q-learning

Q[v, a] converges to Q∗(v, a) if the following conditions are met:

▶ Q-values are updated infinitely often on all state-action pairs
▶ Learning rate function β satisfies

∑
i β(i) =∞ and

∑
i β(i)2 <∞

▶ All costs are bounded; i.e., there exist a constant C such that
|c| < C holds for any cost c received

36

Today’s Agenda

Introduction

Review: LRTA*

Markov decision problem

Real-time dynamic programming

Q-learning

Function approximation

Summary

37

Problemwith tabular representation of parameters

Note that so far, we assumed that U[v] and Q[v, a] are represented
in tabular form

▶ The table U has the size of number of states |V|
▶ The table for Q has the size of |V| × |A|

These tables must be filled with values (=learning parameters)

Not efficient if the number of states is large

38

Function approximation
to reduce number of parameters

Represent state v as a vector of features

v = [x1, x2, . . . , xm]

Define U[v] and Q[v, a] as a parametric function of these features

U(v) = f (x1, x2, . . . , xm; θ)

where θ is a set of parameters

Instead of learning U[v], learn parameter θ

39

Example

For a node represented as a feature vector

v = [x1, x2, . . . , xm],

define U(v) to be a linear function with parameters θ = [θ1, . . . , θm],
i.e.,

U(v) = θ1x1 + θ2x2 + · · ·+ θnxm

Then learn θ1, θ2, . . . , θm instead of tabular representation for U[v],
using, e.g., gradient-based training

More complex functions can be modeled by, for example, artificial
neural networks

40

If two states have many feature values in common, parameters
adjusted for one state also influences the value for the other state.

å learning can be more efficient

However, choosing unsuitable function representation makes it
difficult to learn U∗ or Q∗

41

Today’s Agenda

Introduction

Review: LRTA*

Markov decision problem

Real-time dynamic programming

Q-learning

Function approximation

Summary

42

Model-based reinforcement learning

RTDP, LRTA*, etc.

Applicable when model of the state space (i.e., P(v′ | v, a), c(v, a)) is
available

Model-free reinforcement learning

Q-learning, SARSA, etc.

Applicable even if P(v′ | v, a), c(v, a)) are not available—agent has
to find optimal policy by actually exploring the state space, trying
every action in every state

▶ Useful when the model of the problem is not available, or if
the problem is difficult to model

▶ Major problem is the learning inefficiency

43

Applications

Reinforcement learning has been used successfully in various tasks,
most notably in game playing:

▶ TD-Gammon [Tesauro, 1992]
combines temporal difference learning with function
approximation using a neural network

▶ Alpha Go
Q-learning and neural network-based function approximation
(Deep Q-Networks)

	Title
	Introduction
	Review: LRTA*
	Markov decision problem
	Real-time dynamic programming
	Q-learning
	Function approximation
	Summary

