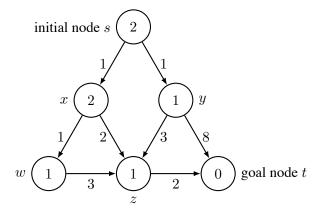
3010 Artificial Intelligence: Assignment 2 Due: 5 pm, Monday, June 3, 2019


Write a report answering Questions 1–2. (Note: questions continue to the back of the page). Post the report in the drop-in box in front of Information Science Administration Office, by no later than 5 pm, June 3.

Note: We use the following terminology:

- A heuristic function h is said to be *admissible* in a state space graph if 0 ≤ h(v) ≤ h*(v) holds for every node v in the graph, where h*(v) is the cost of the cheapest path from node v to a nearest goal node.
- A heuristic function h is said to be *monotone* in a state space graph if (i) for every edge (v, u) in the graph, $h(v) \le h(u) + c(v, u)$ holds, and (ii) h(t) = 0 holds for every goal node t.

Question 1

Consider the state space graph shown below. This graph has six nodes (s, x, y, z, w, t), with an initial node s and a goal node t. The number inside each node represents the value of the heuristic function h at the node, and the number next to each edge represents its cost. For instance, h(s) = 2, h(w) = 1, and the cost of moving from y to t is c(y, t) = 8.

Now answer the following questions.

- 1. Is this heuristic evaluation function h monotone? Explain your answer.
- 2. Is *h* admissible? Explain your answer.
- 3. Suppose we run the A* algorithm of Figure 1 on this graph. In each iteration of lines 7–14 of function AStar (on the left-hand side of the figure),
 - show which nodes are in OPEN and CLOSED when line 8 is executed, as well as their *g* and *f*-values; and
 - show which node is chosen as v on line 10.

		1 p	rocedure $\operatorname{Expand}(v)$
1 function $AStar(s)$		2	foreach $u \in \operatorname{Succ}(v)$ do
2	$\text{OPEN} \leftarrow \textbf{new} \text{ PriorityQueue}_{f}$	3	if $u \notin OPEN \cup CLOSED$ then
3	$g[s] \leftarrow 0$	4	$g[u] \leftarrow g[v] + c(v, u); \ f[u] \leftarrow g[u] + h(u)$
4	$f[s] \leftarrow h(s)$	5	$Parent[u] \leftarrow v$
5	$\operatorname{Insert}_{f}(\operatorname{OPEN}, s)$	6	$\operatorname{Insert}_{f}(\operatorname{OPEN}, u)$
6	$\text{CLOSED} \leftarrow \emptyset$	7	else if $u \in OPEN$ then
7	loop do	8	if $g[v] + c(v, u) < g[u]$ then
8	if IsEmpty(OPEN) then	9	$g[u] \leftarrow g[v] + c(v, u); \ f[u] \leftarrow g[u] + h(u)$
9	return "failure"	10	$\label{eq:parent_lag} \label{eq:parent_lag} eq:parent_lag$
10	$v \leftarrow \text{DeleteMin}_f(\text{OPEN})$	11	else
11	$\text{CLOSED} \leftarrow \text{CLOSED} \cup \{v\}$	12	if $g[v] + c(v, u) < g[u]$ then
12	if $IsGoal(v)$ then	13	$g[u] \leftarrow g[v] + c(v, u); \ f[u] \leftarrow g[u] + h(u)$
13	return Solution (v, s)	14	$Parent[u] \leftarrow v$
14	$\overline{\text{Expand}}(v)$	15	$CLOSED \leftarrow CLOSED \backslash \{u\}$
		16	$\[\] \[\] \] \[\] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \[\] \] \[\] \] \[\] \] \] \[\] \] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \] \[\] \] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \] \[\] \] \[\] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \] \[\] \] \[\] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \] \[\] \] \[\] \[\] \] \[\] \] \[\] \[\] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \] \[\] \[\] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \]$

Figure 1: A* algorithm. OPEN, CLOSED, Parent, g, and f are global variables. See the lecture slides for more detail.

Answer

1. *h* is monotone, because h(t) = 0, and for each edge (v, u), $h(v) \le c(v, u) + h(u)$ indeed holds, as shown in the following table.

Edge	v	u	h(v)	h(u)	c(v,u)	h(u) + c(v, u)	$h(v) \le h(u) + c(v, u)$
(s,x)	s	x	2	2	1	3	True
(s,y)	s	y	2	1	1	2	True
(x, z)	x	z	2	1	2	3	True
(y,z)	y	z	1	1	3	4	True
(y,t)	y	t	1	0	8	8	True
(z,t)	z	t	1	0	2	2	True
(w,z)	w	z	1	1	3	4	True

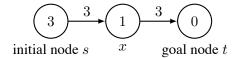
2. Since h is monotone, it is also admissible.

3.	See	the	follo	wing	table.

	OPEN	CLOSED	g[s]/f[s]	g[x]/f[x]	g[y]/f[y]	g[z]/f[z]	g[w]/f[w]	g[t]/f[t]	chosen as v
1	s		0 / 2	/	/	/	/	/	s
2	x,y	s	Q / Z	1 / 3	1 / 2	/	/	/	y
3	x, z, t	s,y	Q / Z	1 / 3	XXX	4 / 5	/	9 / 9	x
4	z, w, t	s, x, y	Q / Z	XXX	XXX	3 / 4	2 / 3	9 / 9	w
5	z,t	s,x,y,w	Q / Z	XXX	XXX	3 / 4	2/3	5 / 5	z
6	t	s,x,y,w,z	ØZ	$\mathcal{E} \setminus \mathcal{J}$	XXX	3 / 4	K \ K	5 / 5	t

Question 2

Explain whether each of the following statements is true or false.


- 1. "If a heuristic function is not admissible, then it is not monotone."
- 2. "Let h be a monotone heuristic function, and and let k > 1. Now define h'(v) = kh(v) for every node v. If h' is admissible, then h' is monotone as well."
- 3. "Let $h_1(v)$ and $h_2(v)$ be two monotone heuristic functions for a graph, and let $h''(v) = \max(h_1(v), h_2(v))$ for every node v. Then, h'' is also monotone."

(Note: $\max(a, b)$ is a function that returns the larger of the two values a and b.)

4. "Let $h_1(v)$ and $h_2(v)$ be two monotone heuristic functions for a graph, and define $h'''(v) = h_1(v) + h_2(v)$ for every node v. If h''' is admissible, then h''' is monotone.

Answer

- 1. True. The statement is the contraposition of the preoperty described in the lecture, "All monotone heurisitc functions are admissible."
- 2. False. As a counterexample, consider the following graph.

Let the heurstic estimates be h(s) = 3, h(x) = 1, and h(t) = 0. It is easy to see that h is monotone. Now consider h'(v) = 2h(v), i.e., k = 2. Then, h'(s) = 6, h'(x) = 2, h'(t) = 0. h' is admissible, as the actual shortest path costs are $h^*(s) = 6$, $h^*(x) = 3$, and $h^*(t) = 0$, and hence $h'(v) \le h^*(v)$ holds for every node v. However, h' is not monotone, because h'(s) = 6 > 2 + 3 = h'(x) + c(s, x).

3. True. Since h_1 and h_2 are both monotone,

$$h_1(v) \le h_1(u) + c(v, u),$$

 $h_2(v) \le h_2(u) + c(v, u),$

for every edge (v, u). Because $a \leq \max(a, b)$ and $b \leq \max(a, b)$,

$$h_1(v) \le \max(h_1(u), h_2(u)) + c(v, u),$$

 $h_2(v) \le \max(h_1(u), h_2(u)) + c(v, u).$

It follows that

$$\max(h_1(v), h_2(v)) \le \max(h_1(u), h_2(u)) + c(v, u),$$

and thus

$$h''(v) \le h''(u) + c(v, u),$$
 (1)

for every edge (v, u). Also, the monotonicity of h_1 and h_2 implies $h_1(t) = h_2(t) = 0$ for every goal node t, and hence $h''(t) = \max(h_1(t), h_2(t)) = 0$. This, together with Eq. (1), shows that h'' is also monotone.

4. False. The counterexample for Statement 2 above also provides the counterexample for this statement. To see why, let h₁ and h₂ both be the monotone heuristic function h in the counterexample. Then, we have h'''(v) = h₁(v) + h₂(v) = h(v) + h(v) = 2h(v) = h'(v) for each node v. As shown above, h' is not monotone, and hence h''' is not monotone, either.