
3010 Artificial Intelligence: Assignment 2
Due: 5 pm, Monday, June 3, 2019
Write a report answering Questions 1–2. (Note: questions continue to the back of the page). Post
the report in the drop-in box in front of Information Science Administration Office, by no later
than 5 pm, June 3.

Note: We use the following terminology:

• A heuristic function h is said to be admissible in a state space graph if 0 ≤ h(v) ≤ h∗(v)
holds for every node v in the graph, where h∗(v) is the cost of the cheapest path from node
v to a nearest goal node.

• A heuristic function h is said to be monotone in a state space graph if (i) for every edge
(v, u) in the graph, h(v) ≤ h(u) + c(v, u) holds, and (ii) h(t) = 0 holds for every goal
node t.

Question 1
Consider the state space graph shown below. This graph has six nodes (s, x, y, z, w, t), with
an initial node s and a goal node t. The number inside each node represents the value of the
heuristic functionh at the node, and the number next to each edge represents its cost. For instance,
h(s) = 2, h(w) = 1, and the cost of moving from y to t is c(y, t) = 8.

2initial node s

2x 1 y

1

z

1w 0 goal node t

1 1

21 3 8

23

Now answer the following questions.

1. Is this heuristic evaluation function h monotone? Explain your answer.

2. Is h admissible? Explain your answer.

3. Suppose we run the A* algorithm of Figure 1 on this graph. In each iteration of lines 7–14
of function AStar (on the left-hand side of the figure),

• show which nodes are in OPEN and CLOSED when line 8 is executed, as well as
their g- and f -values; and

• show which node is chosen as v on line 10.

1



1 function AStar(s)
2 OPEN← new PriorityQueuef
3 g[s]← 0

4 f [s]← h(s)

5 Insertf (OPEN, s)

6 CLOSED← ∅
7 loop do
8 if IsEmpty(OPEN) then
9 return “failure”

10 v ← DeleteMinf (OPEN)

11 CLOSED← CLOSED ∪ {v}
12 if IsGoal(v) then
13 return Solution(v, s)
14 Expand(v)

1 procedure Expand(v)
2 foreach u ∈ Succ(v) do
3 if u ̸∈ OPEN ∪ CLOSED then
4 g[u]← g[v] + c(v, u); f [u]← g[u] + h(u)

5 Parent[u]← v

6 Insertf (OPEN, u)

7 else if u ∈ OPEN then
8 if g[v] + c(v, u) < g[u] then
9 g[u]← g[v] + c(v, u); f [u]← g[u] + h(u)

10 Parent[u]← v

11 else
12 if g[v] + c(v, u) < g[u] then
13 g[u]← g[v] + c(v, u); f [u]← g[u] + h(u)

14 Parent[u]← v

15 CLOSED← CLOSED\{u}
16 Insertf (OPEN, u)

Figure 1: A* algorithm. OPEN, CLOSED, Parent, g, and f are global variables. See the
lecture slides for more detail.

Answer
1. h is monotone, because h(t) = 0, and for each edge (v, u), h(v) ≤ c(v, u) + h(u) indeed

holds, as shown in the following table.

Edge v u h(v) h(u) c(v, u) h(u) + c(v, u) h(v) ≤ h(u) + c(v, u)

(s, x) s x 2 2 1 3 True
(s, y) s y 2 1 1 2 True
(x, z) x z 2 1 2 3 True
(y, z) y z 1 1 3 4 True
(y, t) y t 1 0 8 8 True
(z, t) z t 1 0 2 2 True
(w, z) w z 1 1 3 4 True

2. Since h is monotone, it is also admissible.

3. See the following table.
OPEN CLOSED g[s]/f [s] g[x]/f [x] g[y]/f [y] g[z]/f [z] g[w]/f [w] g[t]/f [t] chosen as v

1 s 0 / 2 / / / / / s

2 x, y s A0 / A2 1 / 3 1 / 2 / / / y

3 x, z, t s, y A0 / A2 1 / 3 A1 / A2 4 / 5 / 9 / 9 x

4 z, w, t s, x, y A0 / A2 A1 / A3 A1 / A2 3 / 4 2 / 3 9 / 9 w

5 z, t s, x, y, w A0 / A2 A1 / A3 A1 / A2 3 / 4 A2 / A3 5 / 5 z

6 t s, x, y, w, z A0 / A2 A1 / A3 A1 / A2 A3 / A4 A2 / A3 5 / 5 t

Question 2
Explain whether each of the following statements is true or false.

1. “If a heuristic function is not admissible, then it is not monotone.”

2. “Let h be a monotone heuristic function, and and let k > 1. Now define h′(v) = kh(v)
for every node v. If h′ is admissible, then h′ is monotone as well.”

3. “Let h1(v) and h2(v) be two monotone heuristic functions for a graph, and let h′′(v) =
max(h1(v), h2(v)) for every node v. Then, h′′ is also monotone.”

2



(Note: max(a, b) is a function that returns the larger of the two values a and b.)

4. “Let h1(v) and h2(v) be twomonotone heuristic functions for a graph, and define h′′′(v) =
h1(v) + h2(v) for every node v. If h′′′ is admissible, then h′′′ is monotone.

Answer
1. True. The statement is the contraposition of the preoperty described in the lecture, “All

monotone heurisitc functions are admissible.”

2. False. As a counterexample, consider the following graph.

3

initial node s

1

x

0

goal node t

3 3

Let the heurstic estimates be h(s) = 3, h(x) = 1, and h(t) = 0. It is easy to see that
h is monotone. Now consider h′(v) = 2h(v), i.e., k = 2. Then, h′(s) = 6, h′(x) = 2,
h′(t) = 0. h′ is admissible, as the actual shortest path costs are h∗(s) = 6, h∗(x) = 3, and
h∗(t) = 0, and hence h′(v) ≤ h∗(v) holds for every node v. However, h′ is not monotone,
because h′(s) = 6 > 2 + 3 = h′(x) + c(s, x).

3. True. Since h1 and h2 are both monotone,

h1(v) ≤ h1(u) + c(v, u),

h2(v) ≤ h2(u) + c(v, u),

for every edge (v, u). Because a ≤ max(a, b) and b ≤ max(a, b),

h1(v) ≤ max(h1(u), h2(u)) + c(v, u),

h2(v) ≤ max(h1(u), h2(u)) + c(v, u).

It follows that

max(h1(v), h2(v)) ≤ max(h1(u), h2(u)) + c(v, u),

and thus

h′′(v) ≤ h′′(u) + c(v, u), (1)

for every edge (v, u). Also, the monotonicity of h1 and h2 implies h1(t) = h2(t) = 0 for
every goal node t, and hence h′′(t) = max(h1(t), h2(t)) = 0. This, together with Eq. (1),
shows that h′′ is also monotone.

4. False. The counterexample for Statement 2 above also provides the counterexample for
this statement. To see why, let h1 and h2 both be the monotone heuristic function h in the
counterexample. Then, we have h′′′(v) = h1(v)+h2(v) = h(v)+h(v) = 2h(v) = h′(v)
for each node v. As shown above, h′ is not monotone, and hence h′′′ is not monotone,
either.

3


