ENGLISH    |  

DMLA/2006年度

概要

データマイニング (data mining; DM) と機械学習 (machine learning; ML) とリンク解析/線形代数 (link analysis/linear algebra; LA) と人工知能 (artificial intelligence; AI) と情報抽出 (information extraction; IE) に関する勉強会.

火曜日: データマイニング・機械学習・リンク解析・人工知能・情報抽出関連の文献紹介
金曜日: データマイニング・機械学習・リンク解析・人工知能・情報抽出関連のテュートリアル/入門書の輪講

日時

時間: 火, 金曜日 17:00-18:30
場所: A707

2006年度

文献紹介, 研究の進捗発表

12/19 (火) 文献紹介:原

Koby Crammer and Yoram Singer.

Ultraconservative online algorithms for multiclass problems.

COLT 2001.

12/12 (火) アルゴリズム紹介:Natalia

Sequential Minimal Optimization

12/5 (火) 文献紹介:木村

L. Mico, J. Oncina, and E. Vidal.

A new version of the nearest-neighbor approximating and eliminating search (AESA) with linear preprocessing-time and memory requirements.

Pattern Recognition Letters, 15:9-17, 1994.

11/17 (金) 文献紹介: Harendra

11/14 (火) 文献紹介:谷口

11/10 (金) 文献紹介:松本

11/07 (火) 文献紹介:Natalia

Koby Crammer and Michael Kearns and Jennifer Wortman

Learning from Data of Variable Quality

Proceedings of the Eighteenth Annual Conference on Neural Information Processing Systems (NIPS), 2005

http://www.cis.upenn.edu/~crammer/publications/vardata.pdf

10/31 (火) 文献紹介: 浅原 (進捗報告:近藤)

Daisuke Okanohara, Yusuke Miyao, Yoshimasa Tsuruoka and Jun'ichi Tsujii

Improving the Scalability of Semi-Markov Conditional Random Fields for Named Entity Recognition

COLING-ACL 2006

http://acl.ldc.upenn.edu/P/P06/P06-1059.pdf

10/27 (金) 文献紹介:中川

Ralf Herbrich and Thore Graepel

Large Scale Bayes Point Machines

In Advances in Neural Information System Processing 13, 2001.

http://www.research.microsoft.com/~rherb/papers/hergrae00c.ps.gz

10/24 (火) 文献紹介:近藤 (進捗報告:新保)

Kamal Nigam and Rayid Ghani.

Analyzing the Effectiveness and Applicability of Co-training

Ninth International Conference on Information and Knowledge Management(CIKM 2000)

http://www.kamalnigam.com/papers/cotrain-CIKM00.pdf

10/20 (金) 渡邉

B. Taskar, P. Abbeel and D. Koller.

Discriminative Probabilistic Models for Relational Data

Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI 2002)

http://ai.stanford.edu/~koller/Papers/Taskar+al:UAI02.pdf

10/13 (金) 木村

Sergey Brin

Near neighbor search in large metric spaces

In Proceedings of the 21st International Conference on Very Large Data Bases (VLDB 1995)

http://citeseer.ist.psu.edu/7762.html

10/10 (火) 伊藤

Thomas Hofmann

The Cluster-Abstraction Model: Unsupervised Learning of Topic Hierarchies from Text Data (1999)

IJCAI

http://citeseer.ist.psu.edu/hofmann99clusterabstraction.html

10/06 (金) 新保

Y. Li, H. Zarogoza, R. Herbrich, J. Shawe-Taylor, J. Kandola.

The perceptron algorithm with uneven margins.

ICML 2002.

10/04 (火) 原

Sunita Sarawagi

Efficient Inference on Sequence Segmentation Models

ICML 2006

7/21 (金) 新保

Ulf Brefeld and Christoph B\"uscher and Tobias Scheffer.

Multi-View Discriminative Sequential Learning.

Proceedings of the European Conference on Machine Learning (ECML 2005).

2005.

7/18 (火) 近藤

Tomer Hertz, Aharon Bar Hillel and Daphna Weinshall

Learning a Kernel Function for Classification with Small Training Samples

Proceedings of the 23rd International Conference on Machine Learning (ICML 2006)

http://www.icml2006.org/icml_documents/camera-ready/051_Learning_a_Kernel_Fu.pdf

7/11 (火) 原

Lasserre, J. and C. M. Bishop and T. Minka

Principled hybrids of generative and discriminative models

Proceedings 2006 IEEE Conference on Computer Vision and Pattern Recognition

pdf: http://research.microsoft.com/~minka/papers/LasserreBishopMinka06.pdf

7/7 (金) 伊藤

7/4 (火) 木村

Ling Li

Multiclass Boosting with Repartitioning

Proceedings of the 23rd International Conference on Machine Learning (ICML 2006)

http://www.icml2006.org/icml_documents/camera-ready/072_Multiclass_Boosting.pdf

6/27 (火) Natalia

Bianca Zadrozny

Learning and evaluating classifiers under sample selection bias

Proceedings of the 21st International Conference on Machine Learning (ICML 2004)

6/23 (金) 乾

Ando, Rie Kubota

Applying Alternating Structure Optimization to Word Sense Disambiguation

Proceedings of the Tenth Conference on Computational Natural Language Learning 2006

http://www.aclweb.org/anthology/W/W06/W06-1311

6/20 (火) 東

Ben Tasker, Carlos Guestrin and Daphne Koller

Max-Margin Markov Networks

NIPS, 2003

http://www.cs.berkeley.edu/~taskar/pubs/mmmn.pdf

6/13 (火) 松本

Michael Collins.

An SVM Approach to Natural Language Processing.

http://people.csail.mit.edu/mcollins/papers/conll.pdf

参考:

B. Taskar, D. Klein, M. Collins, D. Koller and C. Manning.

Max-Margin Parsing.

In Proc. Empirical Methods in Natural Language Processing (EMNLP04), Barcelona, Spain, July 2004.

http://www.cs.berkeley.edu/~taskar/pubs/mmcfg.ps

5/30 (火) 渡邉

Michael Wick, Aron Culotta, and Andrew McCallum.

Learning Field Compatibilities to Extract Database Records from Unstructured Text.

EMNLP 2006.

http://www.cs.umass.edu/~culotta/pubs/wick06learning.pdf

5/19 (金) 持橋 (ATR)

John Canny, "GaP: A Factor Model for Discrete Data".

SIGIR 2004

http://www.cs.berkeley.edu/~jfc/papers/04/GAPmodel/SIGIR2004.pdf

http://www.cs.berkeley.edu/~rattenbt/ABC/

Daniel D. Lee and H. Sebastian Seung,

"Algorithms for Non-negative Matrix Factorization".

NIPS 2000.

http://citeseer.ist.psu.edu/lee00algorithms.html

5/16 (火) 新保

Tom Minka.

Discriminative models, not discriminative training.

Microsoft Research Cambridge, Technical Report TR-2005-144, 2005. Cambridge, UK.

5/12 (金) 小林(の)

Ryan McDonald, Fernando Pereira, Seth Kulick, Scott Winters, Yang Jin, and Pete White

Simple algorithms for complex relation extraction with applications to biomedical IE

ACL 2005

http://www.seas.upenn.edu/~ryantm/papers/relationACL2005.pdf

4/28 (金) 浅原

鈴木 潤 and 磯崎 秀樹

学習誤り最小化に基づく条件付き確率場の学習:言語解析への適用

言語処理学会年次大会 2006

4/25 (火) 新保

Trevor Cohn, Andrew Smith, and Miles Osborne.

Scaling Conditional Random Fields using error-correcting output codes.

In Proceedings of the 43rd Annual Meeting of the ACL, 10-17. 2005.

http://www.inf.ed.ac.uk/publications/online/0722.pdf

4/21 (金) 伊藤

Gunes Erkan Dragomir R. Radev

LexPageRank: Prestige in Multi-Document Text Summarization

EMNLP 2004

http://acl.ldc.upenn.edu/acl2004/emnlp/pdf/Erkan.pdf

チュートリアル

D-Lec を兼ねる.

6/16 (金) 新保

クラスタリング

6/9 (金) 伊藤

データマイニング

6/2 (金) 東

最適化

5/26 (金) 浅原

条件付確率場 (系列ラベリング)

http://cl.naist.jp/~masayu-a/article/2006-05-26.pdf

5/16 (火) 松本

SVM, カーネル法

5/9 (火) 原

機械学習一般

過去の勉強会

リンク集