Equivalence of Holographic and Complex Embeddings

Katsuhiko Hayashi[®] Masashi Shimbo^m

[©]NTT Communication Science Laboratories Mara Institute of Science and Technology

Background

Two state-of-the-art models for embedding knowledge graphs:

- ► Holographic embeddings (HolE) [Nickel et al. 2015]
- ► Complex embeddings (ComplEx) [Trouillon et al. 2016]

Contributions

- Spectral version of HolE reduces time complexity of score computation from $O(n \log n)$ to O(n)
- Equivalence of HolE and ComplEx

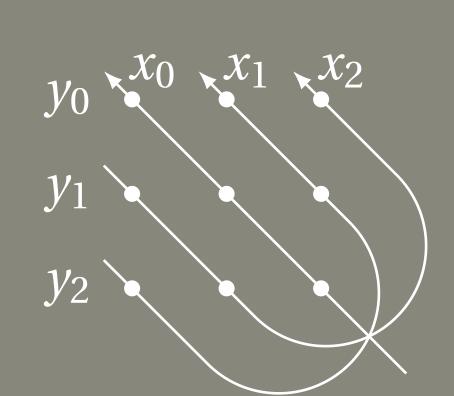
Holographic embeddings (HolE) [Nickel et al. 2015]

Use circular correlation between vectors to define a score function

Circular correlation x * y

$$[\mathbf{x} \star \mathbf{y}]_j = \sum_{k=0}^{n-1} x_{[(k-j) \bmod n]} y_k$$

$$(\text{for } j = 0, \dots, n-1)$$



HolE score function

$$f_{\mathsf{HolE}}(\mathbf{r}, \mathbf{e}_1, \mathbf{e}_2) = \mathbf{r} \cdot (\mathbf{e}_1 \star \mathbf{e}_2)$$

Note: Convolution is commutative/correlation is not Correlation thus allows for modeling asymmetric relations

Use discrete Fourier transform for efficient computation

 $\mathbf{e}_1 \star \mathbf{e}_2 = \mathrm{DFT}^{-1}(\overline{\mathrm{DFT}(\mathbf{e}_1)} \odot \mathrm{DFT}(\mathbf{e}_2))$

where ⊙: elementwise (Hadamard) product

 $\overline{\mathbf{x}}$: complex conjugate of \mathbf{x}

 \longrightarrow Efficient :: DFT, DFT⁻¹ computable in O($n \log n$) time

Proposal: Spectral computation of HolE

Exploit duality in Fourier transform for further speed-up

Observations:

- Every operation required for computing/training HolE has an equivalent counterpart in Fourier (frequency) space
- Dot product is preserved over two spaces (up to scaling)

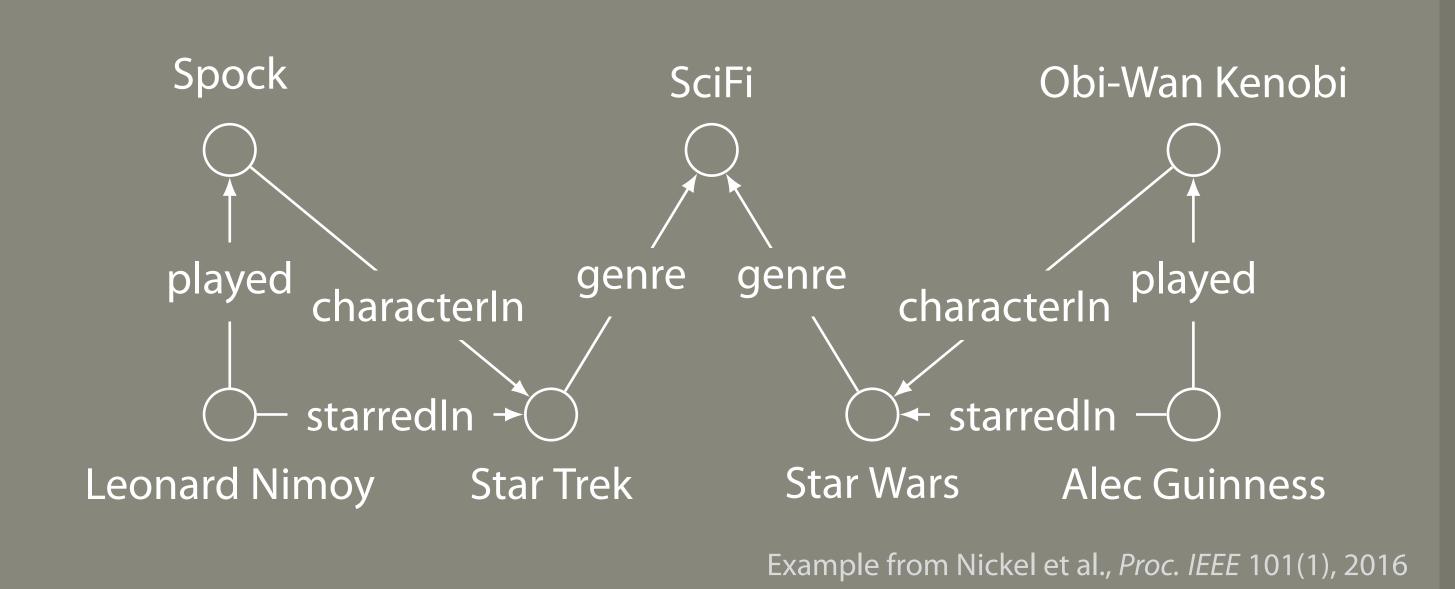
operation in original space			frequency space
scalar multiplicati	on αx	←	$\alpha DFT(\mathbf{x})$
summation	$\mathbf{x} + \mathbf{y}$		$DFT(\mathbf{x}) + DFT(\mathbf{y})$
correlation	$\mathbf{x} \star \mathbf{y}$	←	$\overline{\mathrm{DFT}(\mathbf{x})} \odot \mathrm{DFT}(\mathbf{y})$
dot product	$\mathbf{x} \cdot \mathbf{y}$	=	$(1/n) DFT(\mathbf{x}) \cdot DFT(\mathbf{y})$

Idea:

- Compute everything in frequency space
 - ➡ Training begins with random "frequency" vectors that are conjugate symmetric (see right panel)
- Fourier/inverse Fourier transforms not necessary
 - \rightarrow O(n) time for score computation

Knowledge graph embeddings

Knowledge graphs (DBpedia, Freebase, Wordnet, ...) vertices = entities / edges = relational facts



Knowledge graph completion (KGC)

- Graph usually incomplete = many edges missing
- Want to augment missing edges automatically

Graph embedding approach to KGC

From existing vertices and edges, learn

- vector representation e of each entity e
- ightharpoonup representation \mathbf{r} of each relation r
- ► score function $f(\mathbf{r}, \mathbf{e}_1, \mathbf{e}_2) = \text{likelihood of edge } e_1 \stackrel{r}{\longrightarrow} e_2$

Many different models of function f exist, e.g.,

TransE [Bordes et al. 2013] $f_{\text{TransE}}(\mathbf{r}, \mathbf{e}_1, \mathbf{e}_2) = -\|\mathbf{e}_1 + \mathbf{r} - \mathbf{e}_2\|$

Complex embeddings (ComplEx) [Trouillon et al. 2016]

Similar to DistMult [Yang et al. 2015] but embedding space = complex space (not real space)

$$f_{\text{ComplEx}}(\mathbf{r}, \mathbf{e}_1, \mathbf{e}_2) = \text{Re} \left(\sum_{j=0}^{n-1} [\mathbf{r}]_j [\mathbf{e}_1]_j [\mathbf{e}_2]_j \right)$$

where $\mathbf{r}, \mathbf{e}_1, \mathbf{e}_2$: complex vectors ($\in \mathbb{C}^n$, not \mathbb{R}^n) Re(x): real part of complex value x

Finding: HolE and ComplEx are equivalent

Spectral HolE ⊂ **ComplEx**

 Every spectral HolE vector is a ComplEx vector satisfying conjugate symmetry:

$$\mathbf{x} = \begin{cases} \left[x_0 \ x_1 \cdots x_{(n-1)/2} \ \overline{x_{(n-1)/2}} \cdots \overline{x_1} \right] & \text{if } n \text{ odd} \\ \left[x_0 \ x_1 \cdots x_{n/2-1} \ x_{n/2} \ \overline{x_{n/2-1}} \cdots \overline{x_1} \right] & \text{if } n \text{ even} \end{cases}$$
 with $x_0, x_{n/2} \in \mathbb{R}$; all other $x_j \in \mathbb{C}$

 Score functions for spectral HolE and ComplEx are equivalent

Complex ⊂ **Spectral Hole**

An n-dim. ComplEx vector can be transformed into a (2n+1)-dim. spectral HolE vector

→ HolE = Spectral HolE = ComplEx